Publication:
Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum hall effect

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-08-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarithmic ones, which provided a more stable fit resulting in the localization length critical index v = 2.616 +/- 0.014. We observe an increase of the critical exponent v with the system size, which is possibly the origin of discrepancies with early results obtained for smaller systems.
Description
© 2011 American Physical Society. A. S. acknowledges discussions with I. Gruzberg and V. Kagalovsky and the hospitality of the Universidad Complutense de Madrid, where the major part of the work has been done. A. V. M. and F. D.-A. thank K. Slevin, T. Ohtsuki, and R. Römer for fruitful discus- sions. Part of the calculations were performed at the Aula Sun Cluster and the Clúster de Ca´lculo de Alta Capacidad para Técnicas Físicas, funded by the UCM and the EU under the FEDER program. Work in Madrid was supported by MICINN (Projects Mosaico and MAT2010-17180)
Unesco subjects
Keywords
Citation
[1] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983); Nucl. Phys. B240, 30 (1984); B240, 49 (1984); B240, 71 (1984). [2] J. Chalker and P. Coddington, J. Phys. C 21, 2665 (1988). [3] B. Huckenstein, Rev. Mod. Phys. 67, 357 (1995). [4] H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B 50, 14 609 (1994). [5] D.-H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993). [6] D.-H. Lee, Phys. Rev. B 50, 10 788 (1994). [7] D.-H. Lee and Z. Wang, Philos. Mag. Lett. 73, 145 (1996). [8] M. R. Zirnbauer, Ann. Phys. (Berlin) 506, 513 (1994); N. Read (private communication to M. R. Zirnbauer); see Ref. [56] there. [9] M. R. Zirnbauer, J. Math. Phys. (N.Y.) 38, 2007 (1997). [10] M. J. Bhaseen, I. I. Kogan, O. A. Soloviev, N. Taniguchi, and A. M. Tsvelik, Nucl. Phys. B580, 688 (2000); A. M. Tsvelik, Phys. Rev. B 75, 184201 (2007). [11] A. LeClair, Phys. Rev. B 64, 045329 (2001). [12] S. Cho and M. P. A. Fisher, Phys. Rev. B 55, 1025 (1997). [13] A. Sedrakyan, Phys. Rev. B 68, 235329 (2003). [14] K. Slevin and T. Ohtsuki, Phys. Rev. B 80, 041304(R) (2009). [15] H. Obuse, A. R. Subramaniam, A. Furusaki, I. A. Gruzberg, and A. W. W. Ludwig, Phys. Rev. Lett. 101, 116802 (2008). [16] F. Evers, A. Mildenberger, and A. D. Mirlin, Phys. Rev. Lett. 101, 116803 (2008). [17] A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983). [18] V. N. Tutubalin, Theory Probab. Appl. 10, 15 (1965). [19] A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981). [20] K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997); 82, 382 (1999). [21] F. Milde, R. A. Roömer, M. Schreiber, and V. Uski, Eur. Phys. J. B 15, 685 (2000). [22] A. Eilmes, A. M. Fisher, and R. Römer, Phys. Rev. B 77, 245117 (2008). [23] W. Press, B. Flannery, and S. Teukolsky, Numerical Recipes in Fortran (Cambridge University Press, Cambridge, England, 1992), Chap. 15. [24] A. G. Galstyan and M. E. Raikh, Phys. Rev. B 56, 1422 (1997). [25] P. Cain, R. Ro¨mer, and M. E. Raikh, Phys. Rev. B 67, 075307 (2003). [26] W. Li, G. A. Csa´thy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94, 206807 (2005). [27] W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 216801 (2009).
Collections