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Abstract 

 

One of the most widely-used multivariate conditional volatility models is the dynamic conditional 

correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has 

not yet been established, which has made problematic the derivation of asymptotic properties of 

the Quasi-Maximum Likelihood Estimators. The paper shows that the DCC model can be obtained 

from a vector random coefficient moving average process, and derives the stationarity and 

invertibility conditions. The derivation of DCC from a vector random coefficient moving average 

process raises three important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional 

covariance model of the returns shocks rather than a dynamic conditional correlation model; (ii)  

provides the motivation, which is presently missing, for standardization of the conditional 

covariance model to obtain the conditional correlation model; and (iii) shows that the appropriate 

ARCH or GARCH model for DCC is based on the standardized shocks rather than the returns 

shocks. The derivation of the regularity conditions should subsequently lead to a solid statistical 

foundation for the estimates of the DCC parameters. 

 

Keywords: Dynamic conditional correlation, dynamic conditional covariance, vector random 

coefficient moving average, stationarity, invertibility, asymptotic properties. 

JEL classifications: C22, C52, C58, G32. 
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1. Introduction 

 

Among multivariate conditional volatility models, the dynamic conditional correlation (or DCC) 

specification of Engle (2002) is one of the most widely used in practice. The basic DCC  modelling 

approach has been as follows: (i) estimate the univariate conditional variances using the 

GARCH(1,1) model of Bollerslev (1986), which are based on the returns shocks; and (ii) estimate 

what is purported to be the conditional correlation matrix of the standardized residuals. The first 

step is entirely arbitrary as the conditional variances could just as easily be based on the 

standardized residuals themselves, as will be shown in Section 4 below. 

 

A similar comment applies to the varying conditional correlation model of Tse and Tsui (2002), 

where the first stage is based on a standard GARCH(1,1) model using returns shocks. The second 

stage is slightly different from the DCC formulation as the conditional correlations are defined 

appropriately. However, no regularity conditions are presented, and hence no statistical properties 

are given. 

 

The DCC model has been analyzed critically in a number of papers as its underlying stochastic 

process has not yet been established, which has made problematic the derivation of the asymptotic 

properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical 

properties of the QMLE of the DCC parameters have been derived under highly restrictive and 

unverifiable regularity conditions, which in essence amounts to proof by assumption. 

 

This paper shows that the DCC specification can be obtained from a vector random coefficient 

moving average process, and derives the conditions for stationarity and invertibility. The 

derivation of regularity conditions should subsequently lead to a solid statistical foundation for the 

estimates of the DCC parameters. 

 

The derivation of DCC from a vector random coefficient moving average process raises three 

important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model of 

the returns shocks rather than a dynamic conditional correlation model; (ii)  provides the 

motivation, which is presently missing, for standardization of the conditional covariance model to 
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obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH 

model for DCC is based on the standardized shocks rather than the returns shocks.  

 

The remainder of the paper organized is as follows. In Section 2, the standard ARCH model is 

derived from a random coefficient autoregressive process to provide a background for the 

remainder of the paper. In Section 3, the DCC model is discussed. Section 4 presents a vector 

random coefficient moving average process, from which DCC is derived in Section 5. The 

conditions for stationarity and invertibility are given in Section 6. Some concluding comments are 

given in Section 7. 

 

2. Random Coefficient Autoregressive Process 

 

Consider the following a random coefficient autoregressive process of order one: 

 

tttit   1           (1)  

 

where 

 

t  ~ iid ),0(  , 

t  ~ iid ),0(  . 

 

The ARCH(1) model of Engle (1982) can be derived as (see Tsay (1987)): 

 

2

11

2 )|(   tttt IEh  .        (2)  

 

where th  is conditional volatility, and 1tI  is the information set at time t-1. The use of an infinite 

lag length for the random coefficient autoregressive process leads to the GARCH model of 

Bollerslev (1986).  
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The scalar BEKK and diagonal BEKK models of Baba et al. (1985) and Engle and Kroner (1995) 

can be derived from a vector random coefficient autoregressive process (see McAleer et al. (2008)). 

As the statistical properties of vector random coefficient autoregressive processes are well known, 

the statistical properties of the parameter estimates of the ARCH, GARCH, scalar BEKK and 

diagonal BEKK models are straightforward to establish. 

 

3. DCC Specification 

 

Let the conditional mean of financial returns be given as: 

 

tttt IyEy   )|( 1           (3) 

 

where )'( ...,,1 mttt yyy  , ity  = itPlog  represents the log-difference in stock prices ( itP ), i = 

1,…,m, 1tI  is the information set at time t-1, and t  is conditionally heteroskedastic. Without 

distinguishing between dynamic conditional covariances and dynamic conditional correlations, 

Engle (2002) presented the DCC specification as: 

 

1

'

11)1(   tttt QQQ          (4)  

 

where Q  is assumed to be positive definite with unit elements along the main diagonal, the scalar 

parameters are assumed to satisfy the stability condition,   < 1, the standardized shocks, 

)'( ...,,1 mttt    are given as ititit h/   , with ttt D  , and tD  is a diagonal matrix with 

typical element ith , i = 1,…,m.  

 

As the matrix in equation (4) does not satisfy the definition of a correlation matrix, Engle (2002) 

uses the following standardization: 

 

2/12/1 ))(())(( tttt QdiagQQdiagR         (5) 
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There is no clear explanation given in Engle (2002) for the standardization in equation (5) or, more 

recently, in Aielli (2013). The standardization in equation (5) might make sense if the matrix tQ  

were the conditional covariance matrix of t  or , though this is not made clear. Despite the title 

of the paper, Aielli (2013) also does not provide any stationarity conditions for the DCC model, 

and does not mention invertibility. Indeed, in the literature on DCC, it is not clear whether equation 

(4) refers to a conditional covariance or a conditional correlation matrix. Some caveats regarding 

DCC are given in Caporin and McAleer (2013). 

 

4. Vector Random Coefficient Moving Average Process 

 

Marek (2005) proposed a linear moving average model with random coefficients (RCMA), and 

established the conditions for stationarity and invertibility. In this section, we derive the 

stationarity and invertibility conditions of a vector random coefficient moving average process. 

 

Consider a univariate random coefficient moving average process given by: 

 

tttt   1           (6)  

 

where  

 

t ~  iid ),0(  .   

 

The conditional and unconditional expectations of t  are zero. The conditional variance of t  is 

given by: 

 

2

11

2 )|(   tttt IEh          (7) 

 

t
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which differs from the ARCH(1) model in equation (2) in that the returns shock is replaced by the 

standardized shock. The use of an infinite lag length for the random coefficient moving average 

process in equation (6) would leads to generalized ARCH model that differs from the GARCH 

model of Bollerslev (1986). 

 

The univariate ARCH(1) model in equation (7) is contained in the family of GARCH models 

proposed by Hentschel (1995), and the augmented GARCH model class of Duan (1997). 

 

It can be shown seen from the results in Marek (2005) that a sufficient condition for stationarity is 

that the vector sequence )',( 1 tttt   is stationary. Moreover, by Lemma 2.1 of Marek 

(2005), a sufficient condition for invertibility is that: 

 

  0log tE  .          (8) 

 

The stationarity of  and the invertibility condition in equation (8) are new results 

for the univariate ARCH(1) model given in equation (7), as well as its direct extension to GARCH 

models.  

 

Extending the analysis given above to the multivariate case and to a vector random coefficient 

moving average (RCMA) model of order p, we can derive a special case of DCC(p,q), namely 

DCC(p,0), as follows: 

 

t

p

j

jtjtt  




1

          (9) 

 

where  and  are both 1m  vectors and jt , j = 1,…,p are random iid mm  matrices.  

 

As t  ~ iid ),0(  , the unconditional variance of it  is given as: 

 

)',( 1 tttt 

t t
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)1()( thE . 

 

For the multivariate case in equation (9), it is assumed that the vector t  ~ iid ),0(  . As the 

diagonal elements of   are equal to unity, this is also the correlation matrix of  t . It follows that: 

 














 



p

j

jtHE
1

1)(  . 

 

This approach can easily be extended to include autoregressive terms. For example, in a model 

analogous to GARCH(p,q), namely: 

 

 
 

 
p

i

q

j

jtjititit HH
1 1

'   

 

where )1,0[j  and 


q

j

j

1

 < 1, it follows that: 

 





































q

j

j

p

i

i

tHE

1

1

1

1

)(





. 

 

The derivation given above shows that, as compared with the standard DCC formulation, our 

formulation permits straightforward computation of the unconditional variances and covariances. 

It should also be noted that in Aielli’s (2013) variation of the standard DCC model, it is possible 

to calculate the unconditional expectation of the tQ  matrix, as in equation (4), but this is not equal 

to the unconditional covariance matrix of t  , which is analytically intractable. This is an 

additional advantage of using the vector random coefficient moving average process given in 

equation (9). 
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5. One Line Derivation of DCC 

 

If jt  in equation (9) is given as: 

 

mjtjt I  , with ),0(~ jjt iid  ,    j = 1, …, p,  

 

where jt  is a scalar random variable, then the conditional covariance matrix can be shown to be: 

 




 
p

j

jtjtjtttt IEH
1

'

1

' )|(  .       (10) 

 

The DCC model in equation (4) is obtained by letting p  and standardizing tH  to obtain a 

conditional correlation matrix.  For the case p=1 in equation (10), the appropriate univariate 

conditional volatility model is given in equation (7), which uses the standardized shocks, rather 

than in equation (2),  which uses the returns shocks. 

 

The derivation of DCC in equation (10) from a vector random coefficient moving average process 

is important as it: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model 

of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the 

motivation, which is presently missing, for standardization of the conditional covariance model to 

obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH 

model for DCC is be based on the standardized shocks rather than the returns shocks. 

 

6. Derivation of Stationarity and Invertibility 

 

This section derives the stationarity and invertibility conditions for the DCC model. 

 

Assumption 1.   pmE kt  log         (11)  
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where t  is the Frobenius norm, and t  is given by: 

 



















 



01...0

....

0...01

...21 pttt

t



 

 

Theorem 1. A sufficient condition for stationarity is that the vector sequence: 

 

'

11 ),...,,( ptpttttt    

 

is stationary. Furthermore, under Assumption 1, the vector random coefficient moving average 

process, t , is invertible. 

 

Proof: The proof of stationarity is similar to that given above for the univariate random coefficient 

moving average process. For invertibility, note that:  

 





p

j

jtjttt

1

  

 

which can be written as: 

 

tttt  ~~~
1    

 

where  

 

'

11 ),...,,(~
 ptttt    and  

'

11 ),...,,(~
 ptttt  . 

 

Hence, 
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nt

n

k

kt

n

j

jt

j

k

ktt 













   
1

10 1

1
~ . 

 

Now let: 

 









n

j

jt

j

k

kt

n

t

0 1

1

)(~   

 

Consider 

 

nt

n

k

kt

n

tt
pmnpmn







 
1

1

1
log

11
log

1
 

 

nt

n

k

kt
pmnpmn







   
1

log
11

log
1 1

1

 

 

ntkt

n

k pmnpmn




  
1

log
11

log
1

1

 

 

0
1

log
..

 ktsa
pm

E  

 

as pmE kt  log , by assumption. This implies that 0
..


sa

n

tt   and, hence, t  is 

asymptotically measurable with respect to { ...,, 21  tt   }, and t  is invertible.         

 

Note that a sufficient condition for equation (11) is that: 

 





p

j

jt mE
1

2

           (12) 
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as    ktkt
pm

E
pm

E  
1

log
1

log  

 





p

j

jt mp
pm

E
1

2

)1(
1

log   

 





p

j

jt pp
pm

E
1

2

/)1(
1

log   

 





p

j

jt ppE
pm 1

2

/)1(
1

log   

 

0 . 

 

The condition given in equation (12) may be easier to check that that in equation (11).  

 

For the special case mjtjt I  , with ),0(~ jjt iid  ,    j = 1, …, p,  discussed in Section 5 

above, the condition in equation (12) simplifies to the wel-known condition on the long-run 

persistence to returns shocks, namely: 

 

1
11

2 


p

j

j

p

j

jtE  .  

 

 

7. Conclusion 

 

The paper is concerned with one of the most widely-used multivariate conditional volatility 

models, namely the dynamic conditional correlation (or DCC) specification. As the underlying 

stochastic process to derive DCC has not yet been established, the paper showed that the DCC 

specification could be obtained from a vector random coefficient moving average process, and 
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derived the stationarity and invertibility conditions. The derivation of the regularity conditions 

should eventually lead to a solid foundation for the statistical analysis of the estimates of the DCC 

parameters. 

 

The derivation of DCC from the vector random coefficient moving average process demonstrated 

that DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than a 

dynamic conditional correlation model. Moreover, the derivation provided the motivation, which 

is presently missing, for standardization of the conditional covariance model to obtain the 

conditional correlation model. Finally, the derivation also showed that the appropriate ARCH or 

GARCH model for DCC is based on the standardized shocks rather than the returns shocks. The 

derivation of regularity conditions should subsequently lead to a solid statistical foundation for the 

QMLE of the DCC parameters. 
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