Publication:
Spatial correlations in nonequilibrium reaction-diffusion problems by the Gillespie algorithm

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-05-14
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a study of the spatial correlation functions of a one-dimensional reaction-diffusion system in both equilibrium and out of equilibrium. For the numerical simulations we have employed the Gillespie algorithm dividing the system into cells to treat diffusion as a chemical process between adjacent cells. We find that the spatial correlations are spatially short ranged in equilibrium but become long ranged in nonequilibrium. These results are in good agreement with theoretical predictions from fluctuating hydrodynamics for a one-dimensional system and periodic boundary conditions.
Description
© 2013 American Physical Society. We are indebted to Jan V. Sengers for suggesting part of this research and carefully reviewing the manuscript.
UCM subjects
Unesco subjects
Keywords
Citation
[1] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [2] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959); 2nd revised English version, 1987. [3] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [4] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [5] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). [6] J.M. Ortiz de Zárate and J.V. Sengers, PhysicaA300, 25 (2001). [7] B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). [8] P. N. Segrè and J. V. Sengers, Physica A 198, 46 (1993). [9] I. Bena, M. M. Mansour, and F. Baras, Phys. Rev. E 59, 5503 (1999). [10] J. F. Lutsko and J. W. Dufty, Phys. Rev. E 66, 041206 (2002). [11] H. Wada and S. I. Sasa, Phys. Rev. E 67, 065302(R) (2003). [12] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 144, 774 (2011). [13] B. M. Law, R. W. Gammon, and J. V. Sengers, Phys. Rev. Lett. 60, 1554 (1988). [14] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [15] C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, and D. S. Cannell, Phys. Rev. Lett. 106, 244502 (2011). [16] J. M. Ortiz de Zárate, J.V. Sengers, D. Bedeaux, and S. Kjelstrup, J. Chem. Phys. 127, 034501 (2007). [17] D. Bedeaux, I. Pagonabarraga, J. M. Ortiz de Zárate, J. V. Sengers, and S. Kjelstrup, Phys. Chem. Chem. Phys. 12, 12780 (2010). [18] G. Nicolis and M. Malek Mansour, Phys. Rev.A29, 2845 (1984). [19] J. Zhang and J. Fan, Phys. Rev. E 79, 056302 (2009). [20] J. Gorecki, K. Kitahara, K. Yoshikawa, and I. Hanazaki, Physica A 211, 327 (1994). [21] J. Wakou, K. Kitahara, M. Litniewski, and J. Gorecki, Physica A 328, 23 (2003). [22] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976). [23] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977). [24] H. H. McAdams and A. Arkin, PNAS 94, 814 (1997). [25] M. Thattai and A. van Oudenaarden, PNAS 98, 8614 (2001). [26] N. Barkai and S. Leibler, Nature (London) 403, 267 (2000). [27] J. A. White, J. T. Rubinstein, and A. R. Kay, Trends Neurosci. 23, 131 (2000). [28] D. Bernstein, Phys. Rev. E 71, 041103 (2005). [29] D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001). [30] D. T. Gillespie and L. R. Petzold, J. Chem. Phys. 119, 8229 (2003). [31] S. Indurkhya and J. Beal, PLoS ONE 5, e8125 (2010). [32] J. Wakou and K. Kitahara, Physica A 281, 318 (2000). [33] G. Nicolis, A. Amellal, G. Dupont, and M. Mareschal, J. Mol. Liq. 41, 5 (1989). [34] F. Baras, J. E. Pearson, and M. Malek Mansour, J. Chem. Phys. 93, 5747 (1990). [35] M. Mareschal and A. De Wit, J. Chem. Phys. 96, 2000 (1992). [36] F. van Wijland, K. Oerding, and H. J. Hilhorst, Physica A 251, 179 (1998). [37] R. Taylor and R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993). [38] D. T. Gillespie, J. Chem. Phys. 113, 297 (2000). [39] R. Zwanzig, J. Phys. Chem. B 105, 6472 (2001). [40] C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, Berlin, 1985). [41] N. G. van Kampen, Phys. Lett. A 59, 333 (1976). [42] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1982). [43] F. Baras, M. Malek Mansour, and J. E. Pearson, J. Chem. Phys. 105, 8257 (1996). [44] R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39, 285 (1985). [45] I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic Press, San Diego, 1994) [46] L. F. Lafuerza and R. Toral, J. Stat. Phys. 140, 917 (2010). [47] D. T. Gillespie, A. Hellander, and L. R. Petzold, J. Chem. Phys. 138, 170901 (2013).
Collections