Publication:
Bias driven coherent carrier dynamics in a two-dimensional aperiodic potential

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-10-27
Authors
Moura, F. A. B. F., de
Viana, L. P.
Lyra, M. L.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the dynamics of an electron wave-packet in a two-dimensional square lattice with an aperiodic site potential in the presence of an external uniform electric field. The aperiodicity is described by epsilon(m) = V cos(pi alpha m(x)(nu x)) cos(pi alpha m(y)(nu y)) at lattice sites (m(x),m(y)), with pi alpha being a rational number, and v(x) and v(y) tunable parameters. controlling the aperiodicity. Using an exact diagonalization procedure and a finite-size scaling analysis, we show that in the weakly aperiodic regime (nu(x), nu(y) < 1), a phase of extended states emerges in the center of the band at zero field giving support to a macroscopic conductivity in the thermodynamic limit. Turning on the field gives rise to Bloch oscillations of the electron wave-packet. The spectral density of these oscillations may display a double peak structure signaling the spatial anisotropy of the potential landscape. The frequency of the oscillations can be understood using a semi-classical approach.
Description
© 2008 Elsevier B.V. All rights reserved. Work at Alagoas was supported by CNPq-Rede Nanobioestruturas, CAPES (Brazilian research agencies) and FAPEAL (Alagoas State agency). Work at Madrid was supported by MEC (Project MOSAICO) and BSCH-UCM (Project PR34/07-15916).
Unesco subjects
Keywords
Citation
[1] G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, Rev. Mod. Phys. 71, 1591 (1999). [2] See contributions to Optics of Quantum Dots and Wires, eds. G. W. Briant and G. S. Solomon (Boston: Artech House, 2005). [3] T. Brandes, Phys. Rep. 408, 315 (2005). [4] J. R. Tischler, M. S. Bradly, Q. Zhang, T. Atay, A. Nurmiko, and V. Bulovíc, Org. Electronics 8, 94 (2007). [5] E. L. Albuquerque and M. G. Cottam, Phys. Rep. 376 225 (2003); Polaritons in Periodic and Quasiperiodic Structures (Elsevier: Amsterdam, 2004). [6] P. W. Anderson, Phys. Rev. 109, 1492 (1958). [7] N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968). [8] N. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961). [9] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). [10] J. C. Flores, J. Phys.: Condens. Matter 1, 8471 (1989). [11] D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65, 88 (1990). [12] P. W. Phillips and H.-L. Wu, Science 252, 1805 (1991). [13] A. Sánchez and F. Domínguez-Adame, J. Phys A:Math. Gen. 27, 3725 (1994); A. Sánchez, E. Maciá, and F. Domínguez-Adame, Phys. Rev. B 49, 147 (1994). [14] E. Diez, A. Sánchez, F. Domínguez-Adame, Phys Rev. B 50, 14359 (1994); F. Domínguez-Adame, E.Diez, and A. Sánchez, Phys. Rev. B 51, 8115 (1995). [15] F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998); 84, 199 (2000); Physica A 266, 465 (1999). [16] F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). [17] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravicini, F. Domínguez-Adame, and R. Gómez-Alcalá, Phys. Rev. Lett. 82, 2159 (1999). [18] U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J. Stöckmann, Appl. Phys. Lett. 77, 633 (2000). [19] S. Das Sarma, S. He, and X. C. Xie, Phys. Rev. Lett. 61, 2144 (1988); Phys. Rev. B 41, 5544 (1990). [20] D. R. Grempel, S. Fishman, and R. E. Prange, Phys. Rev. Lett. 49, 833 (1982). [21] M. Griniasty and S. Fishman, Phys. Rev. Lett. 60, 1334 (1988). [22] D. J. Thouless, Phys. Rev. Lett. 61, 2141 (1988). [23] H. Yamada, Phys. Rev. B 69, 014205 (2004). [24] E. Maciá, Rep. Prog. Phys. 69, 397 (2006). [25] E. Maciá and F. Domínguez-Adame, Electrons, Phonons and Excitons in Low Dimensional Aperiodic Systems, Editorial Complutense, Madrid (2000). [26] F. A. B. F. de Moura, L. P. Viana, and A. C. Frery, Phys. Rev. B 73, 212302 (2006). [27] F. A. B. F. de Moura, Eur. Phys. J. B 58, 389 (2007). [28] F. Bloch, Z. Phys. 52, 555 (1927). [29] C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934). [30] L. Esaki and R. Tsu, IBM J. Res. Div. 14, 61 (1970). [31] G. H. Wannier, Phys. Rev. 100, 1227 (1955); Phys. Rev. 101, 1835 (1956); Phys. Rev. 117, 432 (1960); Rev. Mod. Phys. 34, 645 (1962). [32] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986). [33] K. Leo, P. Hairing, F. Brüggemann, R. Schwedler and K. Köhler, Solid State Commun. 84, 943 (1992). [34] K. Leo, Semicond. Sci. Technol. 13, 249 (1998). [35] V. Agarwal, J. A. delRio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova and B. Gil, Phys. Rev. Lett. 92, 097401 (2004). [36] F. Domínguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and M. L. Lyra, Phys. Rev. Lett. 91, 197402 (2003). [37] F. A. B. F. de Moura, M. L. Lyra, F. Domínguez-Adame, and V. A. Malyshev, J. Phys.: Condens. Matter 19, 056204 (2007). [38] F. Domínguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and M. L. Lyra, Phys. Rev. B 71, 104303 (2005). [39] E. Díaz, F. Domínguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006). [40] H. N. Nazareno and P. E. de Brito, Phys. Rev. B 60, 4629 (1999). [41] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56 1469, (1993). [42] M. Tit and M. Schreiber, J. Phys.: Condens. Mattter. 7, 5549 (1995). [43] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders Colege Publishers, New York, 1976), P. 213.
Collections