Publication:
Fiske steps and hysteresis in YBa2Cu3O7 grain boundary Josephson junctions: Structural information of the barrier by means of a nondestructive approach

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-12-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A deep analysis of the current-voltage (I-V) characteristics of YBa2Cu3O7 grain boundary Josephson junctions (GBJJs) allows us to go much farther than the usual calculus of the transport parameters. It is possible to construct a structural image of the barrier by an exhaustive and complementary analysis of both transport and electromagnetic parameters obtained from I-V curves. For such an approach, we have chosen the following three representative bicrystalline geometries: 24 degrees [001] asymmetric, 45 degrees [100] asymmetric, and 24 degrees [001] symmetric +45 degrees [100] asymmetric. The dependence of the product ICRN on the junction normal resistance is of the ICRN-1 type pointing to a SNINS model (S denotes superconductor, I denotes insulator, and N denotes normal metal) for all our GBJJs. A satisfactory explanation of the discrepancy of the capacitance of the barrier estimated from Fiske resonance positions and hysteresis in the I-V curves needs of such a model. Moreover an estimation of the length of the normal regions adjacent to the crystallographic barrier can be made. This comparative analysis is presented in order to extract interesting information about the particular transport mechanisms involved in these GBJJs.
Description
(c) American Institute of Physics.
Unesco subjects
Keywords
Citation
1) U. Poppe, Y.Y. Divin, M.I. Faley, J.S. Wu, C.L. Jia, P. Shadrin, and K. Urban, IEEE Trans. Appl. Supercond., 11, 3768 (2001). 2) Y.Y. Divin, U. Poppe, C.L. Jia, P. Shadrin, and K. Urban, Physica C, 372–376, 115 (2002). 3) E. Sarnelli, G. Testa, D. Crimaldi, A. Mónaco, and M.A. Navacerrada, Supercond. Sci. Technol., 18, L-35 (2005). 4) M. Oishi, N. Chikumoto, J. Kato, S. Tajima and M. Otsuka, Physica C, 426-431, 79 (2005). 5) F. Lombardi, T. Bauch, J. Johansson, K. Cedergren, T. Lindström, F. Tafuri, and E. Stepantsov, Physica C, 435, 8 (2006). 6) H. Hilgenkamp, J. Mannhart, and B. Mayer, Phys. Rev. B, 53, 14586 (1996). 7) A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982). 8) H. Hilgenkamp and J. Mannhart, IEEE Trans. Appl. Supercond., 9, 3405 (1999). 9) J. Mannhart and H. Hilgenkamp, Physica C, 317–318, 383 (1999). 10) M.A. Navacerrada, M.L. Lucía, L.L. Sánchez-Soto, F. Sánchez-Quesada, E. Sarnelli, and G. Testa, Phys. Rev. B, 71, 014501 (2005). 11) M.A. Navacerrada, M.L. Lucía, L.L. Sánchez-Soto, F. Sánchez-Quesada, C. Nappi and E. Sarnelli, Phys. Rev. B, 74, 024507 (2006). 12) M.A. Navacerrada, M.L. Lucía, L.L. Sánchez-Soto, F. Sánchez-Quesada, C. Nappi, and E. Sarnelli IEEE Trans. Appl. Supercond., 17, 3541 (2007). 13) P.F. McBrien, R.H. Hadfield, W.E. Booij, A. Moya, F. Kahlmann, M.G. Blamire, C.M. Pregum, and E.J. Tarte, Physica C, 339, 88 (2000). 14) E.J. Tarte, G.A. Wagner, R.E. Somekh, F.J. Baundenbacher, P. Berghuis, and J.E. Evetts, IEEE Trans. Appl. Supercond., 7, 3662 (1997). 15) M.D. Fiske, Rev. Mod. Phys., 36, 221 (1964). 16) E. Sarnelli and G. Testa, Physica C, 371, 10 (2002). 17) J.L. Sun and J. Gao, Phys. Rev. B, 62, 1457 (2000). 18) R.C. Neville, B. Hoeneisen, and C.A. Mead, J. Appl. Phys., 43, 2124 (1972). 19) J.H.T. Ransley, P.F. McBrien, G. Burnell, E.J. Tarte, J.E. Evetts, R.R. Schulz, C.W. Schneider, A. Schmehl, H. Bielefeldt, H. Hilgenkamp, and J. Mannhart, Phys. Rev. B, 70, 104502 (2004). 20) E. Sarnelli, G. Testa, D. Crimaldi, A. Mónaco, M. Adamo, and M.A. Navacerrada, IEEE Trans. Appl. Supercond., 15, 245 (2005). 21) A.C. Scott and W.J. Johnson, Appl. Phys. Lett., 14, 316 (1969). 22) H. Zappe, J. Appl. Phys., 44, 137 (1972). 23) B.H. Moeckly and R.A. Buhrman, IEEE Trans. Appl. Supercond., 5, 3414 (1995). 24) J. Humlicek, J. Kircher, H.U. Habermeier, M. Cardona, and A. Roseler, Physica C, 190, 383 (1992). 25) Y.C.W. Schneider, S. Hembacher, G. Hammerl, R. Held, A. Schmehl, A. Weber, T. Kopp and J. Mannhart, Phys. Rev. Lett., 92, 257003 (2004). 26) J. Yoshida, H. Katsuno, S. Inove, and T. Nagano, Physica C, 367, 260 (2002). 27) J. Halbritter, Phys. Rev. B, 46, 14861 (1992). 28) J. Yoshida and T. Nagano, Phys. Rev. B, 55, 11860 (1997). 29)J. Yoshida, S. Inove, H. Sugiyama, and T. Nagano, Physica C, 335, 226 (2000).
Collections