Publication:
Intraband exciton relaxation in a biased lattice with long-range correlated disorder

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We numerically study the intraband exciton relaxation in a one-dimensional lattice with a scale-free disorder in the presence of a linear bias. Exciton transport is the incoherent hopping over the eigenstates of the static lattice. The site potential of the unbiased lattice is long-range-correlated with a power-law spectral density S(k)similar to 1/k(alpha), alpha>0. The lattice supports a phase of extended states at the center of the band, provided alpha is larger than a critical value alpha(c) [F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998)]. When the bias is applied, the absorption spectrum displays clear signatures of the Wannier-Stark ladder [E. Diaz, F. Dominguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006)]. We demonstrate that in unbiased lattices and in weakly correlated potentials, the decay law is nonexponential. However, the decay is purely exponential when the bias increases and alpha is large. We relate this exponential decay to the occurrence of the Wannier-Stark ladder in the exciton band.
Description
©2008 The American Physical Society. The authors thank V. A. Malyshev and Yu. A. Kosevich for helpful conversations. This work was supported by MEC Project MOSAICO.
Unesco subjects
Keywords
Citation
1. M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E 53, 414 (1996). 2. S. Havlin, S. V. Buldyrev, A. Bunde, A. L. Goldberger, P. Ch. Ivanov, C.-K. Peng, and H. E. Stanley, Physica A 273, 46 (1999). 3. P. Carpena, P. Bernaola-Galván, P. Ch. Ivanov, and H. E. Stanley, Nature London 418, 955 2002; 421, 764 (2003). 4. H. Yamada, Phys. Lett. A 332, 65 (2004); Int. J. Mod. Phys. B 18, 1697 (2004); Phys. Rev. B 69, 014205 (2004). 5. E. L. Albuquerque, M. S. Vasconcelos, M. L. Lyra, and F. A. B.F. de Moura, Phys. Rev. E 71, 021910 (2005). 6. S. Roche, D. Bicout, and E. Maciá, Phys. Rev. Lett. 92, 109901 (2004). 7. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998). 8. F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). 9. G.-P. Zhang and S.-J. Xiong, Eur. Phys. J. B 29, 491 (2002). 10. H. Shima, T. Nomura, and T. Nakayama, Phys. Rev. B 70, 075116 (2004). 11. F. Bloch, Z. Phys. 52, 555 (1928). 12. F. Domínguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and M. L. Lyra, Phys. Rev. Lett. 91, 197402 (2003). 13. G. H. Wannier, Phys. Rev. 117, 432 (1960). 14. E. Díaz, F. Domínguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006). 15. D. J. Heijs, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 121, 4884 (2004). 16. M. Bednarz, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 117, 6200 (2002). 17. M. Shimizu, S. Suto, and T. Goto, J. Chem. Phys. 114, 2775 (2001). 18. M. Bednarz, V. A. Malyshev, J. P. Lemaistre, and J. Knoester, J. Lumin. 94-95, 271 (2001) 19. A. V. Malyshev, V. A. Malyshev, and F. Domínguez-Adame, Chem. Phys. Lett. 371, 417 (2003). 20. A. V. Malyshev, V. A. Malyshev, and F. Domínguez-Adame, J. Phys. Chem. 107, 4418 (2003). 21. E. E. Méndez, F. Agulló-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988). 22. F. Agulló-Rueda, E. E. Méndez, and J. M. Hong, Phys. Rev. B 40, 1357 (1989). 23. M. K. Saker, D. M. Whittaker, M. S. Skolnick, M. T. Emeny, and C. R. Whitehouse, Phys. Rev. B 43, 4945 (1991). 24. H. Fukuyama, R. A. Bari, and H. C. Fogedby, Phys. Rev. B 8, 5579 (1973).
Collections