Publication:
Nuevos recubrimientos biocidas en implantología. Evaluación, mediante un biofilm formado por 6 tipos de bacterias subgingivale

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Antecedentes y objetivos: La biopelícula oral ocupa un lugar importantísimo en el desarrollo de las enfermedades periimplantarias (mucositis o periimplantitis). En la actualidad, se sabe muy poco sobre el comportamiento de estas comunidades bacterianas periimplantarias al ser sometidas a recubrimientos biocidas sobre implantes, pilares y demás aditamentos implantológicos que puedan estar en contacto con ellas. El objetivo de esta investigación fue observar el comportamiento de un material compuesto cerámica-­cerámica con recubrimiento con vidrio biocida, sobre un modelo de biofilm in vitro que contiene seis bacterias de la microbiota subgingival, puesto a punto en el Laboratorio de Investigación de la Facultad de Odontología de la Universidad Complutense de Madrid Material y método: Se emplearon seis cepas de referencia para desarrollar biofilms sobre la superficie de discos de hidroxiapatita (HA) de 7 mm de diámetro y 1.8 mm de espesor y sobre discos de Nano Composite Z10Ce, con recubrimiento con corindón blanco, recubiertos con vidrio CINN (material A2). Se depositaron tres discos de cada material en placas estériles de cultivo celular de 24 pocillos y se cubrieron con 1.5 mL del inóculo (en medio BHI modificado), preparado con el total de las bacterias y se incubaron en anaerobiosis durante 24h, 48h y 72h a 37ºC. Las especies seleccionadas representan colonizadores iniciales (Streptococcus oralis y Actinomyces naeslundii), tempranos (Veillonella parvula), secundarios (Fusobacterium nucleatum) y tardíos (Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans). El análisis de viabilidad bacteriana en el biofilm se realizó mediante Microscopía Confocal (CLSM). El número de unidades formadoras de colonias (UFC)/mL de cada especie presentes en el biofilm se obtuvo mediante recuento visual con microscopio óptico. Para el análisis estadístico, se utilizó un test estadístico de comparación de medias (t test) y el análisis de la varianza (ANOVA). Resultados: En el presente estudio, según el análisis estadístico, se encontraron pocas diferencias estadísticamente significativas entre el número de bacterias que participan en el desarrollo del biofilm in vitro sobre hidroxiapatita (HA) y el material A2. Aunque, según el recuento bacteriano por cultivo, se pudieron observar mayores diferencias entre ambos materiales Estas diferencias se confirman con los resultados de la microscopía láser confocal (CLSM). Conclusiones: De forma preliminar, este estudio demuestra que el Nano Composite Z10Ce, recubierto con vidrio CINN (material A2), parece que ejerce un efecto biocida en el desarrollo de un modelo de biofilm subgingival in vitro, aunque los datos estadísticos no revelan diferencias significativas. Deben llevarse a cabo más experimentos para comprobar los resultados mostrados en este estudio.
Description
Keywords
Citation
1. Ábalos C. (2005). Adhesión bacteriana a biomateriales. Av. Odontoestomatol 21-­1: 347-­‐353. 2. Afya S. D. A-­R, Dymock D., Younes C., O’Sullivan D. (2012). Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent 40: 146-­153 3. Albouy J.P., Abrahamsson I., Berglundh T. (2012). Spontaneous progression of of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol. 2012 Feb;39(2):182-­‐7. 4. Albrektsson, T. & Isidor, F. (1994) Concensus report of session IV. In: Lang, N.P. & Karring, T., eds. Proceedings of the First European Workshop on Periodontology, 365–369. 5. Allaker R. (2010). The Use of Nanoparticles to Control Oral Biofilm Formation. Journal of Dental Research 89: 1175-1186. 6. Allaker R.P., Hardie J.M. (1998). Oral infections. In: Topley and Wilson’s microbiology and microbial infections. 9th ed. Collier L, Balows A, Sussman M, editors. London: Hodder Arnold Publications, Vol. 3, pp. 373-390. 7. Anglin, E.J., Cheng, L., Freeman, W.R., Sailor, M.J. (2008). Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60, 1266–1277. 8. Ayon, A.A., Cantu, M., Chava, K., Agrawal, C.M., Feldman, M.D., Johnson, D., Patel, D., Marton, D., Shi, E. (2006). Drug loading of nanoporous TiO2 films. Biomed. Mater. L11–L15 9. Baron M., Haas R., Dörtbudak O., Watzek (2000). Experimentally induced periimplantitis: a review of different treatment methods described in the literature. Int J Oral Maxillofac Implants 15: 533–544. 10. Berglundh T., Gotfredsen K., Zitzmann N.U., Lang N.P., Lindhe J. (2007). Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clinical Oral Implant Res 18: 655–661. 11. Berglundh T., Lindhe J. (1996). Dimension of the peri-implant mucosa. Biological width revisited. J Clin Periodontol 23: 971–973. 12. Berglundh T., Lindhe J., Ericsson I., Marinello C.P., Lijenberg B., et al. (1991) The soft Tissue barrier at implants and teeth. Clinical Oral Implants Res 2: 81–90. 13. Buergers R., Gerlach T., Hahnel S., Schwarz F., Handel G, et al. (2010) In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clinical Oral Implants Res 2: 156–164 14. Bürgers R., Witecy C., Hahnel S., Gosau M. (2012). The effect of various topical peri-­implantitis antiseptics on Staphylococcus epidermidis, Candida albicans, and Streptococcus sanguinis. Archives of Oral Biology – El Sevier 57: 940 15. Bürgers R., Gerlach T., Hahnel S., Schwarz F., Handel G. et al. (2010). In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clinical Oral Implants Res 21(2): 156–64. 16. Busscher H., Rinastiti M., Siswomihardjo W., Van der Mei H.C. (2010). Biofilm formation on dental restorative and implant materials. Journal of Dental Research 89: 657–65. 17. Cabal B., Cafini F., Esteban-­Tejeda L., Alou L., Bartolomé J.F., Sevillano D., López-­Piriz R., Torrecillas R., Moya J.S. (2012). Inhibitory effect on in vitro Streptococcus oralis biofilm of a soda-­lime glass containing silver nanoparticles coating on titanium alloy. PLoS One 7(8):e42393. 18. Cortizo M., Oberti T., Cortizo A. (2012). Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: Evaluation of cytotoxicity and early bacterial adhesion. Journal of Dentistry – El sevier 329 – 337. 19. Das K., Bose S., Bandyopadhyay A., Karandikar B., Gibbins B.L. (2008). Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J. Biomed. Mater. Res. Part B 87: 455–460. 20. Davey M.E., Costerton J.W. (2006). Molecular genetics analyses of biofilm formation in oral isolates. Periodontol 2000 42:13-­‐26. 21. Esposito M., Coulthard P., Oliver R., Thomsen P., Worthington H.V. (2004). Antibiotics to prevent complications following dental implant treatment. Australian Dental Journal 49:(4):205. 22. Esposito M., Grusovin M.G., Wothington H.V. (2012). Treatment of periimplantitis: what interventions are effective? A Cochrane systematic review. Eur J Oral Implantol. 5Sppl: 21–41. 23. Esteban-­Tejeda L., Malpartida F., Díaz L.A., Torrecillas R., Rojo F., et al. (2012). Glass-­‐(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates. PLoS ONE 7(3):e33135. 24. Esteban-­Tejeda L., Malpartida F., Esteban-­Cubillo A., Pecharromán C., Moya J.S. (2009). Antibacterial and antifungal activity of a soda-­lime glass containing copper nanoparticles. Nanotechnology 16;20(50):505701. 25. Esteban-­Tejeda L., Malpartida F., Esteban-­Cubillo A., Pecharromán C., Moya J.S. (2009). The antibacterial and antifungal activity of a soda-­lime glass containing silver nanoparticles. Nanotechnology 25;20(8):085103. 26. Fang M., Chen J.H., Xu X.L., Yang P.H., Hildebrand H.F. (2006). Antibacterial formation in oral isolates. Periodontology 2000 42: 13–26. 27. Furst M.M., Salvi G.E., Lang N.P., et al. (2007). Bacterial colonization immediately after installation on oral titanium implants. Clinical Oral Implants Res 18:501-­‐508. 28. Gilbert, P., Das, J. & Foley, I. (1997). Biofilm susceptibility to antimicrobials. Advances in Dental Research 11, 160–167 29. Gosau M., Hahnel S., Schwarz F. (2010). Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clinical Oral Implants Res 21: 866–872. 30. Haffajee, A.D., Cugini M.A., Tanner A., Pollack R.P., Smidth C., Kent R.L., Socransky, S.S. (1998). Subgingival microbiota in healthy, well-­maintained elder and periodontitis subjects. J Clin Periodontol 25: 346-­‐353. 31. Haffajee, A.D., Socransky, S.S. (1994). Microbial etiological agents of destructive periodontal deseases. Periodontol 2000 5: 78-­11. 32. Heitz-­‐Mayfield L.J., Lang N.P. (2010). Comparative biology of chronic and aggressive periodontitis vs. peri-­implantitis. Periodontol 2000 53:167-­‐181. 33. Heitz-­‐Mayfield, L. J., Salvi, G. E., Botticelli, D., Mombelli, A., Faddy, M. & Lang, N. P. (2011). On Behalf of the Implant Complication Research Group (ICRG) Anti-infective treatment of peri-­implant mucositis: a randomised controlled clinical trial. Clinical Oral Implants Res 22, 237–241. 34. Heuer W., Elter C., Demling A., Neumann A., Suerbaum S., Hannig M., et al. (2007). Analysis of early biofilm formation on oral implants in man. Journal of Oral Rehabilitation 34:377–82. 35. Huh A.J., Kwon Y.J. (2011). ‘‘Nanoantibiotics’’: A new paradigm for treating. Implants Res 17 Suppl 2: 68–81. 36. Jenkinson H.F., Lamont R.J. (2005). Oral microbial communities in sickness and in health. Trends Microbiol 13:589-­‐595. 37. Jones, D.S., Medlicott, N.J., (1995). Casting solvent controlled release of chlorhexidine from ethylcellulose films prepared by solvent evaporation. Int. J. Pharm. 114, 257–261. 38. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1): 95–101. 39. Kinane (1999). Periodontitis modified by systemic factors. Ann Periodontol 4:54-­‐63. 40. Kolenbrander P.E. (1988). Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu Rev Microbiol 42:627-­‐656. 41. Kolenbrander P.E., Palmer R.J., Rickard A.H., Jakubovics N.S., Chalmers N.I., Diaz P.I. (2006). Bacterial interactions and successions during plaque development. Periodontol 2000 42:47-­‐79. 42. Lang, N.P. y Berglundh, T. (2011). Periimplant diseases: where are we now?-­‐-­‐ Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 38 Suppl 11: 178-­‐181. 43. Lee A. y Wang H-­‐L. (2010). Biofilm Related to Dental Implants. Implant Dentistry; volume 19, number 5:387-­‐393. 44. Lee B.C., Jung G.Y, Kim D.J, Han J.S. (2011). Initial bacterial adhesion on resin, titanium and zirconia in vitro. J Adv Prosthodont 3:81-­‐4. 45. Leonhardt A., Renvert S. & Dahle´n G. (1999) Microbial findings at failing implants. Clinical Oral Implant Res 10: 339–345. 46. Lewis K. (2001). Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999-­‐1007 47. Lindhe J. y Meyle J. (2008). Peri-­‐implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol 35: 282-­‐285 48. Löe H. (2000). Oral hygiene in the prevention of caries and periodontal disease. International Dental Journal 50, 129–139 49. López-­‐Píriz R., Solá-­‐Linares E., Granizo J.J., Díaz-­‐Güemes I, Enciso S., et al. (2012). Radiologic Evaluation of Bone Loss at Implants with Biocide Coated Titanium Abutments: A Study in the Dog. PLoS ONE 7(12): e52861. 50. Marsh P.D. (2005). Dental plaque: biological significance of a biofilm and community life-­‐style. J Clin Periodontol 32(Suppl.6): 7-­‐15. 51. Martinez A., Guitián F., López-­‐Píriz R., Bartolomé J.F., Cabal B., Esteban-­‐ Tejeda L., Torrecillas R., Moya J.S. (2014).Bone loss at implant with titanium abutments coated by soda lime glass containing silver nanoparticles: a histological study in the dog. PLoS One. 22;9(1):e86926. 52. Medlicott, N.J., Holborow, D.W., Rathbone, M.J., Jones, D.S., Tucker, I.G. (1999). Local delivery of chlorhexidine using a tooth-­‐bonded delivery system. J. Control. Release 61, 337–343. 53. Medlicott, N.J., Tucker, I.G., Rathbone, M.J., Holborow, D.W., Jones, D.S. (1996). Chlorhexidine release from poly (e-­‐caprolactone) films prepared by solvent evaporation. Int. J. Pharm. 143, 25–35. 54. Mombelli A. & Lang N.P. (1992). The diagnosis and treatment of peri-­implantitis. Periodontology 2000 (17): 63–76. 55. Mombelli A., van Oosten M.A., Schurch E. Jr, et al.(1987). The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 2: 145-­‐151. 56. Nociti Junior F.H., Cesco De Toledo R., Machado M.A., Stefani C.M., Line S.R., Goncalves R.B. (2001). Clinical and microbiological evaluation of ligature-­‐ induced periimplantitis and periodontitis in dogs. Clin Oral Implants Res 12:295-­‐300. 57. Ortega Morente E., Fernández-­‐Fuentes M., Grande Burgos M. (2013). Riview. Biocide tolerance in bacteria. International Journal of food microbiology -­‐ El Sevier 162: 13-­‐25. 58. Page R.C, Kornman K.S. (1997). The pathogenesis of human periodontitis: an introduction. Periodontology 2000 14:9-­‐11. 59. Persson G.R., Roos-­‐Jansaker A.M., Lindahl C. & Renvert S. (2011). Microbiological results following non-­‐surgical ER:YAG Laser or air abrasive treatment of peri-­‐implantitis. A randomized clinical trial. J Periodontol 82, 1267–1278. 60. Persson G.R., Samuelsson E., Lindahl C. & Renvert S. (2010). Mechanical non-­‐ surgical treatment of peri-­‐implantitis: a single-­‐blinded randomized longitudinal clinical study. II. Microbiological results. J Clin Period 37, 563–573. 61. Pontoriero, R., Tonelli, M.P., Carnevale, G., Mombelli, A., Nyman, S.R. & Lang, N.P. (1994). Experimentally induced peri-­‐implant mucositis. A clinical study in humans. Clinical Oral Implants Res 5: 254–259. 62. Pye A.D., Lockhart D.E.A., Dawson M.P., Murray C.A., Smith A.J. (2009). A review of dental implants and infection. Journal of Hospital Infection 72: 104–110. 63. Quirynen M., De Soete M., van Steenberghe D. (2002). Infectious risks for oral implants: a review of the literature. Clin Oral Implants Res 13(1): 1–19. 64. Radin, S., Ducheyne, P. (2007). Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomaterials 28, 1721–1729. 65. Rai M., Yadav A., Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 27(1):76-­‐83. 66. Rams T.E., Degener J.E., Van Winkelhoff A.J. (2014). Antibiotic resistance in human peri-­‐implantitis microbiota. Clinical Oral Impantl. Res. 25: 82–90. 67. Renvert S., Lindahl C., Rutger Persson G. (2012). The incidence of peri-­‐ implantitis for two different implant systems over a period of thirteen years. J Clin Periodontol 39: 1191–1197. 68. Renvert S., Polyzois I., Claffey N. (2011). How do implant surface characteristics influence peri-­‐implant disease? J Clin Periodontol 38 (Suppl.11): 214-­222. 69. Renvert S., Roos-­‐Jansaker A.M., Lindahl C., Renvert H. & Persson, G. R. (2007). Infection at titanium implants with or without a clinical diagnosis of inflammation. Clinical Oral Implants Res 18, 509–516. 70. Renvert S., Samuelsson E., Lindahl C. & Persson G. R. (2009). Mechanical non-­‐ surgical treatment of peri-­‐implantitis: a double-­‐blind randomized longitudinal clinical study. I: clinical results. J Clin Periodontol 36, 604–609 71. Riggs P.D., Braden M., Patel M. (2000). Chlorhexidine release from room temperature polymerising methacrylate systems. Biomaterials 21, 345–351. 72. Rimondini L., Cerroni L., Carrassi A., Torricelli P. (2002). Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int. J Oral Maxillofac Implants 17: 793-­‐8. 73. Sánchez MC1, Llama-­‐Palacios A, Blanc V, León R, Herrera D, Sanz M. 2011. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. J Periodontal Res. 2011 Apr;46(2):252-­‐60. 74. Scarano A., Piatelli M., Caputi S., Favero G.A., Piatelli A. (2004). Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J. Periodontol. Vol. 75. N. 2. 292-­‐296. 75. Schwarz F., Sahm N., Iglhaut G. & Becker J. (2011). Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-­‐implantitis: a randomized controlled clinical study. J Clin Periodontol 38, 276–284. 76. Schwarzt F., Papanicolau P., Rothamel D., Beck B., Herten M., Becker J. (2006). Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces. J Biomed Mater Res A. 1;77(3):437-­‐44. 77. Sedlacek M.J. y Walker C. (2007). Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 22(5): 333-­‐339 78. Serino G. & Ström C. (2009). Peri-­‐implantitis in partially edentulous patients: association with inadequate plaque control. Clinical Oral Implants Res 20, 169–174. 79. Sham N., Becker J., Santel T., Schwartz F. (2011). Non surgical treatment of periimplantitis using an air-­‐abrasive device or mechanical debridement and local application of clorhexidine: a prospective, randomized, controlled clinical study. J Clin Periodontol. 38(9):872-­‐838: 872–8. 80. Shibli J.A., Melo L., Ferrari D.S., et al. (2008) Composition of supra-­ and subgingival biofilm of subjects with healthy and diseased implants. Clin Oral Implants Res 19:975-­‐982. 81. Simchi A., Tamjid E., Pishbin F., Boccaccini A.R. (2011). Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 7(1):22-­‐39. 82. Socransky S. S. & Haffajee A. D. (1992). The bacterial etiology of destructive periodontal diseases: current concepts. Periodontology 2000 63, 322–331. 83. Socransky S. S. & Haffajee A. D. (1994). Evidence of bacterial etiology: a historical perspective. Periodontology 2000 5, 7–25. 84. Socransky S. S. & Haffajee A. D. (2005). Periodontal Microbial Ecology. Perdiodontol 2000 38: 135-­‐187 85. Socransky S.S., Haffajee A.D., Cugini M.A., Smith C., Kent Jr. RL. (1998). Microbial complexes in subgingival plaque. J Clin Periodontol 25: 134-­‐144. 86. Sreenivasan P., Gaffar A. (2002). Antiplaque biocides and bacterial resistance: a review. J Clin Periodontol 29: 965–974. 87. Sreenivasan P., Gaffar A. (2002). Antiplaque biocides and bacterial resistance: a review. J Clin Periodontol 29: 965–974. 88. Stefan R., Ioannis P., Noel C. (2012). Surgical treatment of peri-­‐implantitis. Clin. Oral Implants Res. (Suppl. 6), 84–94 89. Teughels W., Van Assche N., Sliepen I., Quirynen M. (2006). Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implants Res. 17, 68–81. 90. Teughels W., Van Assche N., Sliepen I., Quirynen M. (2006). Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. Suppl 2:68-­‐81. 91. The American Academy of Periodontology (AAP) (2013). Peri-­‐Implant Mucositis and Peri-­‐Implantitis. J Periodontol Vol. 84, Num. 4: 436-­‐443 92. Verredt E., Braem A., Chaudari A. (2011). Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics -­‐ El Sevier 419:28–32 93. Wecke J., Kersten T., Madela K., Moter A., Göbel U.B., Friedmann A., Bernimoulin J. (2000). A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett. 191(1):95-­‐101. 94. Wilson M., Patel H., Fletcher J. (1996). Susceptibility of biofilms of Streptococcus sanguis to chlorhexidine gluconate and cetylpyridinium chloride. Oral Microbiol Immunol 11(3):188-­‐92. 95. Yoshinari M., Oda Y., Kato T., Okuda K. (2001). Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22: 2043-­‐2048 96. Zilberman M. 2005. Dexamethasone loaded bioresorbable films used in medical support devices: structure, degradation, crystallinity and drug release. Acta Biomater. 1, 615–624. 97. Zitzmann N.U., Abrahamsson I., Berglundh T., Lindhe J. (2002). Soft tissue reactions to plaque formation at implant abutments with different surface topography. An experimental study in dogs. J Clin Periodontol. 29(5):456-­‐61. 98. Zitzmann N.U., Berglundh T .(2008). Definition and prevalence of periimplant diseases. J Clin Periodontol 35: 286-­‐291.