Publication:
Rotating beams in isotropic optical system

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-02-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Based on the ray transformation matrix formalism, we propose a simple method for generation of paraxial beams performing anisotropic rotation in the phase space during their propagation through isotropic optical systems. The widely discussed spiral beams are the particular case of these beams. The propagation of these beams through the symmetric fractional Fourier transformer is demonstrated by numerical simulations.
Description
© 2010 OSA. T. Alieva thanks Spanish Ministry of Education and Science (project TEC2008-04105/TEC).
Keywords
Citation
1. E. Abramochkin, and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102(3-4), 336–350 (1993). 2. E. Abramochkin, and V. Volostnikov, “Spiral-type beams: optical and quantum aspects,” Opt. Commun. 125(4-6), 302–323 (1996). 3. E. Abramochkin, and V. Volostnikov, “Spiral light beams,” Phys. Usp. 47(12), 1177–1203 (2004). 4. A. Y. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Centrifugal transformation of the transverse structure of freely propagating paraxial light beams,” Opt. Lett. 31(6), 694–696 (2006). 5. A. Bekshaev, and M. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006). 6. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970). 7. R. Simon, and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17(2), 342–355 (2000). 8. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23(10), 2494–2500 (2006). 9. G. F. Calvo, “Wigner representation and geometric transformations of optical orbital angular momentum spatial modes,” Opt. Lett. 30(10), 1207–1209 (2005). 10. T. Alieva, and M. J. Bastiaans, “Orthonormal mode sets for the two-dimensional fractional Fourier transformation,” Opt. Lett. 32(10), 1226–1228 (2007). 11. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001). 12. M. J. Bastiaans, and T. Alieva, “First-order optical systems with unimodular eigenvalues,” J. Opt. Soc. Am. A 23(8), 1875–1883 (2006). 13. T. Alieva, and M. J. Bastiaans, “Mode mapping in paraxial lossless optics,” Opt. Lett. 30(12), 1461–1463 (2005). 14. A. Wünsche, “General Hermite and Laguerre two-dimensional polynomials,” J. Phys. Math. Gen. 33(17), 1603– 1629 (2000). 15. E. Abramochkin, and V. Volostnikov, “Generalized Gaussian beams,” J. Opt. A, Pure Appl. Opt. 6(5), S157– S161 (2004). 16. T. Alieva, and A. Barbé, “Self-fractional Fourier images,” J. Mod. Opt. 46, 83–99 (1999).
Collections