Publication:
Anderson transition in low-dimensional disordered systems driven by long-range nonrandom hopping

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-01-17
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The single-parameter scaling hypothesis predicts the absence of delocalized states for noninteracting quasiparticles in low-dimensional disordered systems. We show analytically, using a supersymmetric method combined with a renormalization group analysis, as well as numerically that extended states may occur in the one- and two-dimensional Anderson model with a nonrandom hopping falling off as some power of the distance between sites. The different size scaling of the bare level spacing and the renormalized magnitude of the disorder seen by the quasiparticles finally results in the delocalization of states at one of the band edges of the quasiparticle energy spectrum.
Description
© 2003 The American Physical Society. V. A. M. acknowledges support from MECyD (Project No. SAB2000-0103). A. R. and F. D-A. were supported by DGI-MCyT (Project No. MAT2000-0734) and CAM (Project No. 07N/0075/2001). G. S. and M. A. M-D. acknowledge support from PGC (Project No. BFM2000-1320-C02-01).
Unesco subjects
Keywords
Citation
[1] P.W. Anderson, Phys. Rev. 109, 1492 (1958). [2] E. Abrahams, P.W. Anderson, D. C. Licciardello, and V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). [3] P. A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985). [4] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993). [5] D. E. Logan and P. G. Wolynes, Phys. Rev. B 29, 6560 (1984); 31, 2437 (1985); 36, 4135 (1987); J. Chem. Phys. 87, 7199 (1987). [6] L. S. Levitov, Europhys. Lett. 9, 83 (1989); Ann. Phys. (Leipzig) 8, 697 (1999). [7] A. D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. Seligman, Phys. Rev. E 54, 3221 (1996). [8] D. A. Parshin and H. R. Schober, Phys. Rev. B 57, 10 232 (1998). [9] L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev. Lett. 84, 2678 (2000); Phys. Rev. B 64, 224202 (2001). [10] A. Nabetani, A. Tamioka, H. Tamaru, and K.. Miyano, J. Chem. Phys. 102, 5109 (1995). [11] R. Kopelman, M. Shortreed, Z.-Y. Shi, W. Tan, Z. Xu, J. Moore, A. Bar-Haim, and J. Klafter, Phys. Rev. Lett. 78, 1239 (1997). [12] M. A. Martín-Delgado, J. Rodríguez-Laguna, and G. Sierra, Phys. Rev. B 65, 155116 (2002); cond-mat/0012382. [13] A. Rodríguez, V. A. Malyshev, and F. DomínguezAdame, J. Phys. A 33, L161 (2000). [14] K. B. Efetov, Adv. Phys. 32, 53 (1983). [15] S. Guruswamy, A. LeClair, and A.W.W. Ludwig, Nucl. Phys. B583, 475 (2000). [16] R. Shankar, Rev. Mod. Phys. 66, 129 (1994). [17] A.W.W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, Phys. Rev. B 50, 7526 (1994). [18] G. H. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Maryland, 1996). [19] M. A. Martín-Delgado, G. Sierra, and R. M. Noack, J. Phys. A 32, 6079 (1999)
Collections