Publication:
Rotation and gyration of finite two-dimensional modes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-02-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Hermite-Gauss and Laguerre-Gauss modes of a continuous optical field in two dimensions can be obtained from each other through paraxial optical setups that produce rotations in (four-dimensional) phase space. These transformations build the SU(2) Fourier group that is represented by rigid rotations of the Poincare sphere. In finite systems, where the emitters and the sensors are in N x N square pixellated arrays, one defines corresponding finite orthonormal and complete sets of two-dimensional Kravchuk modes. Through the importation of symmetry from the continuous case, the transformations of the Fourier group are applied on the finite modes.
Description
© 2008 Optical Society of America. T. Alieva acknowledges the Spanish Ministry of Education and Science for financial support (project TEC 2005- 02180/MIC). K. B. Wolf acknowledges the support of the SEP-CONACYT (México) project IN102603 “Óptica Matemática.” The authors are grateful to the UCM/ UNAM Collaboration Agreement for making this joint work possible. We appreciate Guillermo Krötzsch for assistance with the graphics, and Luis Edgar Vicent for Figs. 2 and 5.
Keywords
Citation
1. R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000). 2. M. J. Bastiaans and T. Alieva, “First-order optical systems with unimodular eigenvalues,” J. Opt. Soc. Am. A 23, 1875–1883 (2006). 3. T. Alieva and M. J. Bastiaans, “Orthonormal mode sets for the two-dimensional fractional Fourier transform,” Opt. Lett. 32, 1226–1228 (2007). 4. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007). 5. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light” Progress in Optics, Vol. XXXIX, E. Wolf, ed. (Elsevier, 1999), pp. 294–374. 6. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, “Finite two-dimensional oscillator: I. The Cartesian model,” J. Phys. A 34, 9381–9398 (2001). 7. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Contraction of the finite one-dimensional oscillator,” Int. J. Mod. Phys. A 18, 317–327 (2003). 8. A. Frank and P. Van Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics (Wiley, 1998); Sect. 1.1. 9. G. F. Calvo, “Wigner representation and geometric transformations of optical orbital angular momentum spatial modes,” Opt. Lett. 30, 1207–1209 (2005). 10. N. M. Atakishiyev and K. B. Wolf, “Fractional Fourier–Kravchuk transform,” J. Opt. Soc. Am. A 14, 1467–1477 (1997). 11. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Finite models of the oscillator,” Phys. Part. Nucl. 36, Suppl. 3, 521–555 (2005). 12. L. C. Biedenharn and J. D. Louck, “Angular momentum in quantum mechanics,” in Encyclopedia of Mathematics and Its Applications, Vol. 8, G.-C. Rota, ed. (Addison-Wesley, 1981), Sect. 3.6. 13. N. M. Atakishiyev and S. K. Suslov, “Difference analogs of the harmonic oscillator,” Theor. Math. Phys. 85, 1055–1062 (1991). 14. M. Krawtchouk, “Sur une généralization des polinômes d’Hermite,” C. R. Acad. Sci. Paris 189, 620–622 (1929). 15. N. M. Atakishiyev and K. B. Wolf, “Approximation on a finite set of points through Kravchuk functions,” Rev. Mex. Fís. 40, 366–377 (1994). 16. N. M. Atakishiyev, L. M. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” J. Comput. Appl. Math. 107, 73–95 (1999). 17. L. Barker, Ç. Çandan, T. Hakioğlu, and H. M. Ozaktas, “The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform,” J. Phys. A 33, 2209–2222 (2000). 18. L. Barker, “Continuum quantum systems as limits of discrete quantum systems: II. State functions,” J. Phys. A 34, 4673–4682 (2001). 19. L. E. Ruiz-Vicent, “Análisis de señales discretas finitas mediante el modelo de oscilador finito de su_2_,” Ph. D. thesis (Universidad Autónoma del Estado de Morelos, Cuernavaca, 2007). 20. K. B. Wolf and G. Krötzsch, “Geometry and dynamics in the Fresnel transforms of discrete systems,” J. Opt. Soc. Am. A 24, 2568–2577 (2007). 21. K. B. Wolf and G. Krötzsch, “Geometry and dynamics of squeezing in finite systems,” J. Opt. Soc. Am. A 24, 2871–2878 (2007).
Collections