Publication:
Absorption spectra of dipolar Frenkel excitons in two-dimensional lattices with configurational disorder: Long-range interaction and motional narrowing effects

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000-02-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present results of numerical simulations of optical absorption line shape of Frenkel excitons in two-dimensional disordered lattices. Disorder is generated by Gaussian randomness in the molecular positions. The intersite interaction is considered to be of dipole origin, including coupling to far neighbors. Results of simulations are compared with those obtained in the frame of the nearest-neighbor approximation, showing remarkable differences in the absorption line shape. The motional narrowing effect is found to be essentially different from that previously reported for the case of diagonal disorder as well as for that produced by randomness in nearest-neighbor hopping integrals.
Description
© 2000 American Institute of Physics. The authors thank R. Brito for helpful comments. Work at Madrid was supported by CAM under Project No. 07N/ 0034/98. V.A.M. thanks UCM for the support under Saba´ticos Complutense.
Unesco subjects
Keywords
Citation
1. A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, 1971). 2. F. C. Spano and J. Knoester, in Advances in Magnetic and Optical Resonance, edited by W. S. Warren (Academic, New York, 1994), Vol. 18, p. 117. 3. J-Aggregates, edited by T. Kobayashi (World Scientific, Singapore, 1996), p. 111. 4. J. Terpstra, H. Fidder, and D. A. Wiersma, Chem. Phys. Lett. 179, 349 (1991). 5. H. Fidder, Ph.D. thesis, Groningen, 1993. 6. A. Nabetani, A. Tamioka, H. Tamuru, and K. Miyano, J. Chem. Phys. 102, 5109 (1995). 7. D. Möbius, Adv. Mater. 7, 437 (1995). 8. S. Engelhard and F. H. M. Faisal, J. Chem. Phys. 110, 3596 (1999). 9. K. Zhu and T. Kobayashi, Phys. Lett. A 196, 105 (1994). 10. Y. Xiao and W.-H. Hai, Phys. Lett. A 209, 99 (1995). 11. V. V. Konotop and S. Takeno, Phys. Rev. B 55, 11 342 (1997). 12. V. V. Konotop, M. Salerno, and S. Takeno, Phys. Rev. E 56, 7240 (1997). 13. P. L. Christiansen, Yu. B. Gaididei, M. Johansson, K. Ø. Rasmussen, V. K. Mezentsev, and J. Juul Rasmussen, Phys. Rev. B 57, 11 303 (1998). 14. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 95, 7880 (1991). 15. V. Malyshev and P. Moreno, Phys. Rev. B 51, 14587 (1995). 16. G. G. Kozlov, V. A. Malyshev, F. Domínguez-Adame, and A. Rodríguez, Phys. Rev. B 58, 5367 (1998). 17. V. A. Malyshev, A. Rodríguez, and F. Domínguez-Adame, J. Lumin. 81, 127 (1999). 18. J.-P. Lemaistre, J. Lumin. 76–77, 437 (1998). 19. D. L. Huber and W. Y. Ching, Phys. Rev. B 39, 8652 (1989). 20. M. L. Glasser, J. Math. Phys. 14, 409 (1973). 21. R. J. Elliott, J. A. Krumhansl, and P. L. Leath, Rev. Mod. Phys. 46, 465 (1974). 22. D. L. Huber, Chem. Phys. 128, 1 (1988). 23. A. Boukahil and D. L. Huber, J. Lumin. 45, 13 (1990). 24. R. A. Tahir-Kheli, Phys. Rev. B 6, 2808 (1972); 6, 2826 (1972); 6, 2838 (1972). 25. I. Avgin, D. L. Huber, and W. Y. Ching, Phys. Rev. B 46, 223 (1992); 48, 16109 (1993). 26. I. Avgin and D. L. Huber, Phys. Rev. B 48, 13625 (1993). 27. E. W. Knapp, Chem. Phys. 85, 73 (1984). 28. M. Schreiber and Y. Toyozawa, J. Phys. Soc. Jpn. 51, 1528 (1982). 29. V. A. Malyshev and F. Domı´nguez-Adame, Chem. Phys. Lett. 313, 255 (1999). 30. A. Tilgner, H. P. Tromsdorf, J. M. Zeigler, and R. M. Hochstrasser, J. Lumin. 45, 373 (1990); J. Chem. Phys. 96, 781 (1992). 31. J. M. Rorison and D. C. Herbert, Superlattices Microstruct. 1, 423 (1985). 32. J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, Phys. Rev. Lett. 59, 2337 (1987). 33. V. A. Malyshev, Opt. Spektrosk. 71, 873 (1991); [Opt. Spectrosc. 71, 505 (1991)]; J. Lumin. 55, 225 (1993). 34. J. Canisius and J. L. van Hemmen, J. Phys. C 18, 4873 (1985).
Collections