Publication:
Decoherence due to an excited-state quantum phase transition in a two-level boson model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-09
Authors
Pérez Fernández, P.
Arias, J. M.
Dukelsky, J.
García Ramos, J. E.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The decoherence induced on a single qubit by its interaction with the environment is studied. The environment is modeled as a scalar two-level boson system that can go through either first-order or continuous-excited-state quantum phase transitions, depending on the values of the control parameters. A mean-field method based on the Tamm-Damkoff approximation is worked out in order to understand the observed behavior of the decoherence. Only the continuous-excited-state phase transition produces a noticeable effect in the decoherence of the qubit. This is maximal when the system-environment coupling brings the environment to the critical point for the continuous phase transition. In this situation, the decoherence factor (or the fidelity) goes to zero with a finite-size scaling power law.
Description
©2009 The American Physical Society. This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia and by the European regional development fund (FEDER) under Projects No. FIS2008-04189, No. FIS2006-12783-C03-01, No. FPA2006-13807-C02-02, and No. FPA2007-63074, by CPAN-Ingenio, by Comunidad de Madrid under Project No. 200650M012, CSIC, and by Junta de Analucia a under Projects No. FQM160, No. FQM318, No. P05-FQM437, and No. P07-FQM-02962. A. R. is supported by the Spanish program "Juan de la Cierva" and P. P- F. is supported by a FPU grant of the Spanish Ministerio de Educacion y Ciencia.
UCM subjects
Unesco subjects
Keywords
Citation
[1] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). [2] M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005). [3] F. M. Cucchietti, S. Fernández Vidal, and J. P. Paz, Phys. Rev. A 75, 032337 (2007). [4] C. Cormick and J. P. Paz, Phys. Rev. A 77, 022317 (2008). [5] D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, and R. Fazio, Phys. Rev. A 75, 032333 (2007). [6] L. C. Wang, H. T. Cui, and X.-X. Yi, Phys. Lett. A 372, 1387 (2008). [7] S. Camalet and R. Chitra, Phys. Rev. Lett. 99, 267202 (2007). [8] Z.-G. Yuan, P. Zhang, and S.-S. Li, Phys. Rev. A 75, 012102 (2007). [9] A. Relaño, J. M. Arias, J. Dukelsky, J. E. García Ramos, P. Pérez Fernández, Phys. Rev. A 78, 060102 (R) (2008). [10] P. Cejnar, S. Heinze, and M. Macek, Phys. Rev. Lett. 99, 100601 (2007). [11] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009). [12] W. D. Heiss, F. G. Scholtz, and H. B. Geyer, J. Phys. A 38, 1843 (2005); F. Leyvraz and W. D. Heiss, Phys. Rev. Lett. 95, 050402 (2005); W. D. Heiss, J. Phys. A 39, 10081 (2006). [13] S. Heinze, P. Cejnar, J. Jolie, and M. Macek, Phys. Rev. C 73, 014306 (2006); M. Macek, P. Cejnar, J. Jolie, and S. Heinze, ibid. 73, 014307 (2006); P. Cejnar, M. Macek, S. Heinze, J. Jolie, and J. Dobes, J. Phys. A 39, L515 (2006). [14] M. A. Caprio, P. Cejnar, and F. Iachello, Ann. Phys. 323, 1106 (2008). [15] P. Cejnar and P. Stránský, Phys. Rev. E 78, 031130 (2008). [16] J. Vidal, J. M. Arias, J. Dukelsky, and J. E. García Ramos, Phys. Rev. C 73, 054305 (2006); J. M. Arias, J. Dukelsky, J. E. García Ramos, and J. Vidal, ibid. 75, 014301 (2007).
Collections