Publication:
Three-dimensional effects on the electronic structure of quasiperiodic systems

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1995-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We report on a theoretical study of the electronic structure of quasiperiodic, quasi-one-dimensional systems where fully three-dimensional interaction potentials are taken into account. In our approach, the actual physical potential acting upon the electrons is replaced by a set of nonlocal separable potentials, leading to an exactly solvable Schrodinger equation. By choosing an appropriate trial potential, we obtain a discrete set of algebraic equations that can be mapped onto a general tight-binding-like equation. We introduce a Fibonacci sequence either in the strength of the on-site potentials or in the nearest-neighbor distances, and we find numerically that these systems present a highly fragmented, self-similar electronic spectrum, which becomes singular continuous in the thermodynamical limit. In this way we extend the results obtained so far in one-dimensional models to the three-dimensional case. As an example of the application of the model we consider the chain polymer case.
Description
© Elsevier Science BV. This work is supported by CICYT through project MAT95-0325.
Unesco subjects
Keywords
Citation
[1] D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Phys. Rev. Lett. 56, 1951 (1984). [2] A. I. Goldman and R. F. Kelton, Rev. Mod. Phys. 65, 213 (1993). [3] B. Sutherland and M. Kohmoto, Phys. Rev. B 36, 5877 (1987). [4] D. Würtz, M. P. Sorensen, and T. Schneider, Helv. Phys. Acta 61, 345 (1988). [5] M. Goda and H. Kubo, J. Phys. Soc. Jpn. 58, 2109 (1989). [6] M. Severin, M. Dulea, and R. Riklund, J. Phys. Condens. Matter 1, 8851 (1989). [7] R. B. Capaz, B. Koiller, and S. L. A. de Queiroz, Phys. Rev. B 42, 6402 (1990). [8] M. E. J. Newman and R. B. Stinchcombe, Phys. Rev. B 43, 1183 (1991). [9] F. Dom´ınguez-Adame and A. S´anchez, Phys. Lett. A 159, 153 (1991). [10] R. Merlin, K. Bajema, R. Clarke, F. -Y. Juang, and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985). [11] J. Todd, R. Merlin, R. Clarke, K. M. Mohanty, and J. D. Axe, Phys. Rev. Lett. 57, 1157 (1986). [12] H. Röder, E. Hahn, H. Brune, J. -P. Bucher, and K. Kern, Nature 366, 141 (1993). [13] Y. Wada, T. Uda, M. Lutwyche, S. Kondo, and S. Heike, J. Appl. Phys. 74, 7321 (1993). [14] E. Maci´a, F. Domínguez-Adame, and A. Sánchez, Phys. Rev. E 50, R679 (1994). [15] J. M. Luck, Phys. Rev. B 39, 5834 (1989). [16] E. Maciá, F. Dom´ınguez-Adame, and A. Sánchez, Phys. Rev. B 49, 9503 (1994). [17] B. W. Knight and G. A. Peterson, Phys. Rev. 132, 1085 (1963). [18] P. R. Sievert and M. L. Glasser, Phys. Rev. B 7, 1265 (1973). [19] F. Domínguez-Adame, B. Méndez, E. Maciá, and M. A. González, Mol. Phys. 74, 1065 (1991). [20] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Mod. Phys. 60, 781 (1988). [21] M. L. Glasser, Surf. Sci. 64, 141 (1977). [22] F. Laruelle and B. Etienne, Phys. Rev. B 37, 4816 (1988). [23] M. Nakayama, H. Kato, and S. Nakashima, Phys. Rv. B 36, 3472 (1987). [24] K. Kono, S. Nakada, Y. Narahara, and Y. Ootuka, J. Phys. Soc. Jpn. 60, 368 (1991). [25] D. Tuet, M. Potemski, Y. Y. Wang, J. C. Maan, L. Tapfer, and K. Ploog, Phys. Rev. Lett. 66, 2128 (1991). [26] A. Sánchez, E. Maci´a, and F. Domínguez-Adame, Phys. Rev. B 49, 147 (1994). [27] R. E. Borland, Proy. R. Soc. London 274A, 529 (1963). [28] P. M. Grant and I. P. Batra, Solid State Commun. 29, 225 (1979). [29] Y. Liu nad R. Riklund, Phys. Rev. B 35, 6034 (1987). [30] A. Bovier and J. -M. Ghez, Commun. Math. Phys. 158, 45 (1993). [31] M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983).
Collections