Publication:
3-Dimensional effects on extended states in disordered models of polymers

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1995-04-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study electronic transport properties of disordered polymers in a quasi-one-dimensional model with fully three-dimensional interaction potentials. We consider such quasi-one-dimensional lattices in the presence of both uncorrelated and short-range correlated impurities. In our procedure, the actual physical potential acting upon the electrons is replaced by a set of nonlocal separable potentials, leading to a Schrodinger equation that is exactly solvable in the momentum representation. By choosing an appropriate potential with the same spectral structure as the physical one, we obtain a discrete set of algebraic equations that can be mapped onto a tight-binding-like equation. We then show that the re8ection coefficient of a pair of impurities placed. at neighboring sites (dimer defect) vanishes for a particular resonant energy. When there is a finite number of such defects randomly distributed over the whole lattice, we find that the transmission coefficient is almost unity for states close to the resonant energy, and that those states present a very large localization length. Multifractal analysis techniques applied to very long systems demonstrate that these states are truly extended in the thermodynamic limit. These results are obtained with parameters taken from actual physical systems such as polyacetylene, and thus reinforce the possibility of verifying experimentally theoretical predictions about the absence of localization in quasi-one-dimensional disordered systems.
Description
© 1995 The American Physical Society. We thank collaboration and illuminating conversations with E. Macia. Work at Madrid is supported by UCM through Project No. PR161/93-4811. Work at Leganes is supported by the DGICyT (Spain) through Project No. PB92-0248, and by the European Union Human Capital and Mobility Programme through Contract No. ERBCHRXCT930413
Unesco subjects
Keywords
Citation
1. J. C. Flores, J. Phys. Condens. Matter 1, 8471 (1989). 2. D. H. Dunlap, H.-L. Wu, and P. Phillips, Phys. Rev. Lett. 65, 88 (1990). 3. H.-L. Wu and P. Phillips, J. Chem. Phys. 93, 7369 (1990). 4. H.-L. Wu aud P. Phillips, Phys. Rev. Lett. 66, 1366 (1991). 5. P. Phillips and H.-L. Wu, Science 252, 1805 (1991). 6. A. Bovier, J. Phys. A 25, 1021 (1992). 7. G.-L. Wu, W. Goff, and P. Phillips, Phys. Rev. B O5, 1623 (1992). 8. S. N. Evangelou and D. E. Katsanos, Phys. Lett. A 164, 456 (1992). 9. P. K. Datta, D. Giri, and K. Kundu, Phys. Rev. B 47, 10 727 (1993). 10. S. N. Evangelou and A. Z. Wang, Phys. Rev.B 47, 13 126 (1993). 11. J. C. Flores and M. Hilke, J. Phys. A 26, L1255 (1993). 12. F. Domínguez-Adame, E. Maciá, and A. Sánchez, Phys. Rev. B 48, 6054 (1993). 13. A. Sánchez, E. Maciá, and F. Domínguez-Adame, Phys. Rev. B 49, 147 (1994); 49, 15 428(E) (1994). 14. A. Sánchez and F. Domínguez-Adame, J. Phys. A 27, 3725 (1994). 15. S. N. Evangelou, A. Z. Wang, and S. J. Xiong, J. Phys. Condens. Matter 6, 4937 (1994). 16. P. K. Datta and K. Kundu, J. Phys. Condens. Matter 6, 4465 (1994). 17. E. Diez, A. Sánchez, and F. Domínguez-Adame, Phys. Rev. B 50, 14 359 (1994). 18. R. Brito, F. Domínguez-Adame, and A. Sánchez (unpublished). 19. J. M. Ziman, Models of Disorder (Cambridge University Press, London, 1979). 20. F. Domínguez-Adame, B. Méndez, A. Sánchez, and E. Maciá, Phys. Rev. B 49, 3839 (1994). 21. F. Domínguez-Adame, E. Maciá, and A. Sánchez, Phys. Rev. B 50, 6453 (1994). 22. A. Sánchez, F. Domínguez-Adame, and E. Maciá, Phys.Rev. B 51, 173 (1995). 23. M. D. Stephens and J. L. Skinner, Chem. Phys. 177, 727 (1993). 24. B. W. Knight and G. A. Peterson, Phys. Rev. 132, 1085 (1963). 25. P. R. Sievert and M. L. Glasser, Phys. Rev. B 7, 1265 (1973). 26. F. Domínguez-Adame, B. Méndez, E. Maciá, and M. A. González, Mol. Phys. 74, 1065 (1991). 27. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Mod. Phys. 60, 781 (1988). 28. A. Sánchez and L. Vázquez, Int. J. Mod. Phys. B 5, 2825 (1991); S. A. Gredeskul and Yu. S. Kivshar, Phys. Rep. 216, 1 (1992). 29. S. A. Gredeskul, Yu. S. Kivshar, L. K. Maslov, A. Sánchez, and L. Vázquez, Phys. Rev. A 45, 8867 (1992). 30. R. L. Kronig and W. B. Penney, Proc. R. Soc. London A 130, 499 (1931). 31. M. L. Glasser, Surf. Sci. 64, 141 (1977). 32. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 33. A. Galindo and P. Pascual, Quantum Mechanics (Springer, Berlin, 1990). 34. P. D. Kirkman and J. B. Pendry, J. Phys. C 17, 4327 (1984). 35. R. E. Borland, Proc. R. Soc. London A 274, 529 (1963). 36. J. Fink and G. Leising, Phys. Rev. B 34, 5320 (1986). 37. P. M. Grant and I. P. Batra, Solid State Commun. 29, 225 (1979). 38. J. Sak and B. Kramer, Phys. Rev. B 24, 1761 (1981). 39. M. Schreiber and H. Grussbach, Mod. Phys. Lett. B 6, 851 (1992). 40. J. Canisius and J. L. van Hemmen, J. Phys. C 18, 4873 (1985). 41. H. Diicker, M. Struck, Th. Koslowski, and W. von Niessen, Phys. Rev. B 46, 13078 (1992)
Collections