Publication:
Principal components analysis of extensive air showers applied to the identification of cosmic TeV gamma-rays

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
University Chicago Press
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We apply a principal components analysis (PCA) to the secondary particle density distributions at ground level produced by cosmic gamma-rays and protons. For this purpose, high-energy interactions of cosmic rays with Earth's atmosphere and the resulting extensive air showers have been simulated by means of the CORSIKA Monte Carlo code. We show that a PCA of the two-dimensional particle density fluctuations provides a decreasing sequence of covariance matrix eigenvalues that have typical features of a polynomial law, which are different for different primary cosmic rays. This property is applied to the separation of electromagnetic showers from proton simulated extensive air showers, and it is proposed as a new discrimination method that can be used experimentally for gamma-proton separation. A cutting parameter related to the polynomial behavior of the decreasing sequence of covariance matrix eigenvalues is calculated, and the efficiency of the cutting procedure for gamma-proton separation is evaluated.
Description
© 2004. The American Astronomical Society. All rights reserved. This work is supported in part by Spanish Government grants for the research projects BFM2003-04147-C02 and FTN2003-08337-C04-04.
UCM subjects
Unesco subjects
Keywords
Citation
Aharonian, F. A., et al. 2002, A&A, 390, 39 Atkins, R., et al. 2003, ApJ, 595, 803 Bailer-Jones, C. A. L., Irwin, M., Gilmore, G., & von Hippel, T. 1997, MNRAS, 292, 157 Bock, R. K., et al. 2001, Nucl. Instrum. Methods Phys. Res., 516, 511 Camin, D. V. 2004, Nucl. Instrum. Methods Phys. Res., 518, 172 Chilingaryan, A. A. 1995, Pattern Recognition Lett., 16, 333 Edwards, W., Lindman, H., & Savage, L. J. 1990, in Robustness of Bayesian Analyses, ed. J. B. Kadane ( North Holland: Elsevier) Faleiro, E., & Contreras, J. L. 1998, J. Phys., G24, 1795 Faleiro, E., & Gómez, J. M. G. 1999, Europhys. Lett., 45, 437 ———. 2001, Fluctuation & Noise Lett., 1, L117 Faleiro, E., Gómez, J. M. G., & Relaño, A. 2003, Astropart. Phys., 19, 617 Faleiro, E., Gómez, J. M. G., Relaño, A., & Retamosa, J. 2004, Astropart. Phys., in press Fegan, D. J. 1997, J. Phys. G, 23, 1013 Gaisser, T. K. 1990, Cosmic Rays and Particle Physics (Cambridge: Cambridge Univ. Press) Gao, J. B., Cao, Y., & Lee, J.-M. 2003, Phys. Lett. A, 314, 392 Glazebrook, K., Offer, A. R., & Deeley, K. 1998, ApJ, 492, 98 Greisen, K. 1956, Prog. Cosmic Ray Phys., 3, 3 Heck, D., & Knapp, J. 2002, Extensive Air Shower Simulation with CORSIKA ( Karlsruhe: Inst. Kernphys.) Kamata, K., & Nishimura, J. 1958, Prog. Theor. Phys. Suppl., 6, 93 Karle, A., et al. 1995, Astropart. Phys., 4, 1 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in FORTRAN (Cambridge: Cambridge: Univ. Press) Ronen, S., Aragón Salamanca, A., & Lahav, O. 1999, MNRAS, 303, 284 Schafer, B. M., et al. 2001, Nucl. Instrum. Methods Phys. Res., 465, 394 Sokolsky, P. 1989, Introduction to Ultra–high Energy Cosmic Ray Physics (New York: Addison Wesley) Zacks, S. 1977, The Theory of Statistical Inference (New York: Wiley)
Collections