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Effects of the electronic structure on the dc conductance of Fibonacci superlattices
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We derive a discrete Hamiltonian describing a Fibonacci superlattice in which the electronic po-
tential is taken to be an array of equally spaced b potentials, whose strengths modulate the chemical
composition in the growth direction. In this model both diagonal and o8-'diagonal elements of the
Hamiltonian matrix become mutually related through the potential strengths. The corresponding
energy spectrum and related magnitudes, such as the Lyapunov coefBcient, transmission coefBcient,
and Landauer resistance, exhibit a highly fragmented, self-similar nature. We investigate the inBu-
ence of the underlying spectrum structure on the dc conductance at difFerent temperatures obtaining
analytical expressions which relate special features of the dc conductance with certain parameters
that characterize the electronic spectrum of Fibonacci superlattices.

I. INTRODUCTION

The rapid progress achieved with crystal growth tech-
nologies, like molecular beam epitaxy, has made it possi-
ble to grow arti6cial structures with periodic or aperiodic
modulation of chemical composition along the growth di-
rection. In this way, the one-dimensional (1D) order-
ing introduced in the xnanufacturing process gives rise to
novel physical properties such as the formation of mini-
bands which reBect the long-range, quantum correlation
present in multilayered superstructures. In fact, the elec-
tronic properties of superlattices are determined both
by the chemical nature of the constituent bulk materi-
als as well as the layer thicknesses so that these struc-
tures can be grown to tailor their electronic properties as
required. On the other side, the discovery of quasicrys-
tals has attracted strong interest in the physical proper-
ties of quasiperiodic systems, and numerous theoretical
works have been focused on the electronic properties of
1D speci6c realizations. In these systems quasiperiod-
icity leads to higly &agmented spectra that are Cantor
sets having pure-point, absolutely continuous, and singu-
lar continuous components which respectively determine
the existence of localized, extended, and critical states.
In some cases, quasiperiodic potentials admit the exis-
tence of a xnobility edge and allow for a metal-insulator
transition under appropriate conditions. Therefore, it
seems natural to consider the transport properties which
could appear in quasiperiodically modulated superlat-
tices.

Following the first fabrication of a quasiperiodic semi-
conductor superlattice by Merlin and co-workers xnost
works have considered the Fibonacci sequence as a typ-
ical exaxnple of a quasiperiodic system. However, we
think it has not properly been stressed in the litera-
ture that systems ordered according to the Fibonacci

sequence exhibit some charncteristic properties which
are not shared by other quasiperiodic modulations. In
fact, Fibonacci arrangements show spectra with a hier-
archy of splitting minibands displaying self-similar pat-
terns. This point has been experimentally observed in
a variety of situations including electronic, phonon,
third-sound transmission, and absorption spectra with
magnetic 6elds for difFerent Fibonacci systems. Fur-
thermore, theoretical calculations indicate that almost
all electronic eigenstates are neither extended nor lo-
calized but critical in a Fibonacci lattice. Similar re-
sults also apply to the plasmon spectrum of Fibonacci
semiconductor superlattices. In addition, no evidence
of mobility edges has been found, in contrast to what
has been reported for other, non-Fibonaccian, quasiperi-
odic lattices. All these considerations clearly indicate
that the study of Fibonacci superlattices (FSL's) is in-

teresting in its own right, since they are ideally suited
for the understanding of the physical nature of critical
states. Furtherxnore, as far as experimental studies are
concerned, we must remark on the fact that FSL proper-
ties are robust, i.e., xnay be preserved in the presence of
significant levels of randomness. In fact, x-ray diEraction
studies show that moderately large growth Buctuations
in the sequential deposition of layers do not disturb seri-
ously the quasiperiodic order exhibited by FSL's.

Recent investigations on perpendicular transport prop-
erties of photoexcited carriers in semiconductor FSL's
revealed the existence of a self-similar structure in the
energy spectrum with localization properties somewhat
intermediate between periodic and random systems.
Moreover, small oscillations of the resistance of a FSL
under a fixed magnetic field have been. reported very
recently. The peak positions of the measured resistance
are in good agreement with those of the transmission gaps
predicted in sixnple theoretical models, indicating a well-
de6ned self-similar scheme. These results clearly renew
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the interest in the peculiar transport properties through
Fibonacci systems.

The electronic spectrum structure of FSL's, within the
tight-binding, single-band approximation, is firmly estab-
lished for two special cases. These correspond to the
situation in which we choose the (say, GaAs) wells to
have all the same width but the barriers (say, GaA1As)
to have either difFerent widths (transfer models) or dif-
ferent heights (on-site models). In these tight-binding
analyses the multilayered heterostructures can be identi-
fied with a series of quantum wells which are coupled by
a nearly constant interaction energy. Less attention has
been paid to the class of models for which both diagonal
and ofF-diagonal terms are present in the Hamiltonian de-
scribing the interaction between nearest-neighbor quan-
tum wells. ' These mixed models are more appropriate
in order to describe reaIistic FSL's in which the hopping
terms would take difFerent values depending upon the
chemical nature of the layers.

The aim of this paper is to uncover the relationship
between the transport properties of a Fibonacci system
and the structure of its underlying energy spectrum. To
this end we will work out a general treatment, within the
tight-binding approximation, which will allow us to ob-
tain the electronic spectrum of a system describing a FSL
in which specific interactions between. nearest-neighbor
building blocks are taken into account.

The rest of the paper is planned as follows. The ma-
jor features of our model are presented at the beginning
of Sec. II. Afterward, the one-electron Schrodinger equa-
tion describing the electron dynamics is reduced to an
appropiate tight-binding form. We solve this equation
by means of standard transfer-matrix techniques and dis-
cuss the resulting energy spectrum in Sec. III. Next, we
turn to our main issue: the conductance properties of
the superlattice. In Sec. IV we present the conductance
behavior at zero temperature and relate the &actal struc-
ture of the spectrum with the presence of strong conduc-
tance fluctuations. In Sec. V we take into account finite-
temperature effects in the dc conductance. Through this
section interesting features appearing in the conductance
at low temperatures are described and its relationship
with the fragmented nature of the electronic spectrum
discussed. We close Sec. V with the study of the high-
temperature limit where we find a power-law scaling of
conductance with system size. Section VI contains final
considerations as well as possible applications to a num-
ber of physical contexts.

and B ~ A. The sequence S comprises F„elements A
and I" q elements B, I' being the nth Fibonacci num-
ber given by the recurrent law I"„=F„z+ I"„2with
Fo ——Fi ——1. As n increases the ratio F„ i/F„con-
verges toward w = (v 5 —1)/2 which is known as the
inverse golden mean. For the sake of generality we do
not consider any specific potential shape associated with
the A and B building blocks composing our FSL, since,
at present, there exists a number of difFerent potential
profiles (square barriers, V-shaped, sawtooth, parabolic)
for multilayered structures. Instead, we shall assume a
quite general expression for the block potentials given by
means of point interaction potentials. The term point in-
teraction potential refers to any arbitrary sharply peaked
potential approaching the b-function limit (zero width
and constant area). Such potentials are often used in
some physical contexts in solid state physics since, with
limitations, they are good candidates to replace actual,
short-ranged, 1D potentials.

Let us consider a FSL with N—:F„building
blocks. Since we are dealing with a chemically modu-
lated quasiperiodic structure, we will take equally spaced
blocks defining a periodic array of period d and we in-
troduce the quasiperiodic modulation by means of an
appropiate choice of their chemical composition. The
dynamics of electrons in this superstructure will be de-
scribed by the following Schrodinger equation in units
such that I = m' = 1:

1 d2 —) A„b(z —nd) g(z) = EQ(z),

where we allow the potential strength A„ to take on two
values, A~ and A~, arranged according to the Fibonacci
sequence. Hereafter we restrict ourselves to attractive
potentials (A„) 0) and take A~ = 1 without loss of gen-
erality. We express the electron wave function as a linear
combination of localized orbitals Q(z) = Q„C„Q„(z-
nd), where P„(z nd) = QA„—exp( —A„~z—nd~) is the nor-
malized eigenfunction of a b function placed at x = nd.
Neglecting the overlap between difFerent orbitals and as-
suming that only nearest-neighbor interactions are sig-
nificant, we obtain the following tight-binding equation
for the amplitudes:

(E En)Cn —tea, n+1Cn+i + tn, n —iCra 1~—
II. DESCRIPTION OF THE MODEL

Before entering into the description of the model it-
self, some words are in order regarding its physical rel-
evance and its applicability. To grow a FSL we must
define two distinct building blocks, say A and B, and
order them according to the Fibonacci sequence. Each
building block can be composed of one or more layers
of difFerent materials and can have arbitrary thicknesses.
A Fibonacci sequence S of order n is obtained by n
succesive applications of the transformation A + AB

where the on-site energies and the hopping integrals are
mutually related by the expressions

1c„=——A,
2

tn, m+1 — /~~ ~m+1 exp( ~n+&d).

Thus, in our model the chemical modulation parameter
A determines both the on-site energies and the hopping
integrals describing the coupling between nearest build-

ing blocks. Equation (2) can be cast into the matrix form
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where E is the electron energy. The solution of the
dynamical equation (5) is obtained by using standard
transfer-matrix techniques. To minimize end effects we
take periodic boundary conditions. Hence, the allowed
regions of the electronic spectrum can be numerically de-
termined &om the usual condition

N

)TrM(N) (:—Tr
~ ~ ~ h

k=z
(6)

We address this calculation in the next section.

III. ELECTRONIC STRUCTURE
OF THE FIBONACCI SUPERLATTICE

In our numerical simulations, we have studied in detail
different realizations of the FSL by varying the sample
length N, the period d, and the ratio a = A~/Ag which
accounts for the chemical diversity of the superlattice.
The more distant a &om unity, the more different the
chemical nature of the two building blocks. We set pa-
rameter ranges given by 8 & N & 1597, 0.05 & n & 3,
and 1 & d & 6. In all cases considered we have ob-
served a tetrafurcation pattern of the energy spectrum,
characterized by the presence of four main subbands sep-
arated by well-defined gaps. Inside each main subband
the &agmentation scheme follows a trifurcation pattern
in which each subband further trifurcates obeying a hier-
archy of splitting from one to three subsubbands. These
results are illustrated in Fig. 1. In this 6gure we show
the behavior of the Lyapunov coefficient given by the
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0.9-
.0 I I

-0.47 —0.45 —0.

0.6- g2
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0.3-

0.0
-0.6 —0.5 —0.4 -0.3 —0.2

FIG. 1. Lyapunov coefBcient versus energy plot for system
parameters n = 0.75, d = 2.$, and N = 987. The labels a, b,
c, and d denote the main subbands appearing at the first level
of &agmentation of the spectrum. Correspondingly, the labels
g~, g2, g3 indicate the position of the main gaps. The global
tetrafurcation of the spectrum is clearly visible kom this plot
as vrell as its self-sinai&ar character, displayed in more detail
in the inset.

expression I' = (Mii + Mi2 + M2i + M22)/N where

M;~ stand for the elements of matrix M(N). 2i The four
main subbands, labeled a, b, c, and d, are separated
by well-developed local maxima of the Lyapunov coef-
ficient which define the main gaps positions gq, g2, and
g3. In the inset an enlarged view of the centralmost main
subband c shows the self-similar nature of the spectr»m
structure. It is well known that the total number of sub-
bands composing the fragmented spectrum of a FSL of
length F„ is just given by the number of building blocks
present in it. In addition, we have observed that the
number of subsubbands in each main cluster is given by
N = N, = F„3,Ng ——F„4,N~ ——F„2. A similar
distribution rule has been reported for on-site models.

In our numerical study we have analyzed the depen-
dence of the relative widths of both main subbands and
gaps with the model parameters a and ¹ In the 6rst
place we consider the dependence of the energy spectrum
structure on the sample length. Since, strictly speaking,
quasiperiodicity is only observable in the limit N ~ oo,
our results provide information on the yrefractal signa-
ture of the FSL. We have observed that both the position
and widths of the main subbands of the spectrum con-
verge very rapidly to stable values with increasing sam-
ple size for any fixed value of the parameter o.. We shall
refer to this behavior as aaymptotic Stability of the spec-
trum; it implies that its global structure can be obtained
in practice by considering very short approximants to
the infinite quasiperiodic chain (as short as 55 = Eip
units). This remarkable behavior suggests that the first
stage of the spectrum hierarchical splitting is mainly de-
termined by short-range effects, in agreement with real
space renormalization group ideas where the number of
energy levels appearing at the 6rst stage of the renormal-
ization process determines the number of main clusters
in the spectrum.

Next we consider the dependence of the main features
of the spectrum on the chemical diversity parameter a.
Our results are plotted in Fig. 2. As the chemical diver-
sity of the lattice increases, the main subbands become
progresively narrower [Fig. 2(a)] and the gaps steadily
wider [Fig. 2(b)]. The behavior of the normalized widths
is clearly nonlinear with n. Another interesting feature
shown in Fig. 2 concerns the existence of crossing points
in the bandwidth evolution. The existence of such points
implies that the relative importance of different subbands
and gaps appearing in the spectrum can be accurately
controlled by an appropiate choice of the chemical com-
position of the sample. Thus, for e = 0.95 we have a
global pattern spectrum in which b ) a, g2 & g3, and
c ) d whereas for o. = 0.7 the situation is completely re-
versed. Finally, we have calculated the normalized equiv-
alent bandwidth of the spectrum S, defined as the ratio
between the sum of all the allowed energy intervals and
the bandwidth of a periodic lattice made of identical A
blocks. As can be expected &om the Cantor-like nature of
Fibonaccian spectra, the equivalent bandwidth vanishes
as the system size grows. Moreover we have obtained
that S varies as the square root of N for large enough N
obeying a decay law which can be approximately written
as
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of the electronic spectrum are rather insensitive to the
adopted value of this parameter provided that d & 3.
In our units this condition is fulfilled by GaAs-GaA1As
superlattices (electron effective mass m' = 0.067) with
periods ranging Irom 70 K to 340'. and height barriers
in the interval 4—100 meV, respectively. In order to ob-
tain general results from now on we shall take d = 2.5
as a representative value for most of the FSL realiza-
tions discussed in the literature. On the other hand, we
should consider electron-phonon scattering effects which
tend to disrupt coherent quantum transport. These ef-
fects crucially depend on the sample temperature and
it may be confidently expected that their influence can
be neglected at very low temperatures. In this section
we shall consider electron propagation through a FSL at
zero temperature. In this case the relationship between
the electrical conductance at zero temperature and the
transmission coefficient, w(E), is given by the well-known
dimensionless single-channel Landauer formula

FIG. 2. Dependence of the main (a) snbbands and (b) gaps
normalized width on the chemical composition of the sample.
The width of each spectrum feature is normalized to the band-
width corresponding to the perfect A superlattice. The labels
appearing on each curve correspond to those given in Fig. 1.
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Therefore, for a given value of the chemical diversity pa-
rameter, we obtain a linear evolution of the equivalent
bandwidth in a ln8 versus in% plot. According with
earlier works such a behavior is characteristic of a
singular continuous spectrum signature for which all the
wave functions are critical, i.e., neither localized nor ex-
tended in a standard way. Since this fact becomes inde-
pendent of the superlattice chemical composition, we can
conclude that a metal-insulator transition depending on
a suitable choice of the chemical composition is not to be
expected in our model.
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IV. CONDUCTANCE OF THE FIBONACCI
SUPERLATTICE AT ZERO TEMPERATURE 1.0

0.8-
c)

The richness in structure displayed by the electronic
spectrum of a FSL should be reflected, to some ex-
tent, in its transport properties, and evidence for this
to be the case has recently been reported in experimen-
tal works. ' ' ~ Generally speaking there are two factors
which must be taken into account in order to evaluate
the relative importance of typical quasiperiodic effects on
the perpendicular transport of FSL's. On the one hand,
since these effects are esentially quantum in nature, we
must consider systems with strong coupling between ad-
jacent blocks. In our model the degree of coupling be-
tween nearest-neighbor blocks is given by the parameter
d. We have numerically checked that the overall features
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FIG. 3. Landauer conductance at zero temperature for a
FSL with N = 987 atoms and (a) n = 0.99, (b) 0.9, and (c)
0.8.
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&(E)
~p(E) =

The energy dependence of the transmission coeKcient
can be obtained in a straightforward manner in the
transfer-matrix formalism. The calculation is carried out
by embedding our finite FSL in an infinite periodic lat-
tice of identical A blocks. In this way we have calcu-
lated the Landauer conductance +Q for a wide range of
model parameters a and N. A typical example of the
obtained results is shown in Fig. 3 for N = 987 and dif-
ferent values of the chemical diversity parameter. In the
limit o. -+ 1 the translational symmetry of the superlat-
tice is recovered and, accordingly, it should be expected
that Landauer conductance would diverge almost every-
where. On the contrary we observe in Fig. 3(a) that, for
n = 0.99, the Landauer conductance exhibits a highly
fragmented structure displaying dramatic Buctuations.
Actually, there exists only a minor &action of energy val-
ues where conductance reaches large values, whereas at
the remaining energies it takes on a wide range of lower
conductance values. This result clearly indicates the ex-
treme sensibility of the conductance behavior to minute
variations in the chemical composition of the FSL. Fur-
thermore, note the overall decrease of the conductance
peaks as the chemical diversity increases [compare the
vertical scales of Figs. 3(a)—3(c)]. Finally, by comparing
Fig. 3(a) with both 3(b) and 3(c), it becomes apparent
that the &agmentation of the energy spectrum progres-
sively manifests itself in the conductance pattern as a
increases. Particularly, note the well-diHerentiated tri-
furcation structure of conductance peaks for n = 0.9 and
a = 0.8. These features can be understood as follows. 2~

For any approximant to the FSL the allowed energies
form a set of sparse points approximating a pre&actal
Cantor-set structure. As the electron energy equals one
of these energy levels an enhanced resonant tunneling
takes place leading to high conductance peaks. By in-
creasing either the approximant length or the chemical
diversity of the superlattice, its spectrum becomes more
and more fragmented and strong Suctuations appear as
a function of the electron energy. Therefore, the detailed
structure of the energy spectrum naturally determines
the finer details of the conductance pattern at zero tern. -
perature.

denotes the chemical potential of the sample. We have
calculated the expression (9) mimerically using the trans-
mission coeKcient obtained in the previous section. The
analysis of the obtained lc(T, p) curves reveals interesting
behaviors in both low- and high-temperature ranges. For
convenience we consider these cases separately.

A. dc conductance at lour temperatures
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In the limit T ~ 0 the general form of the r(T, p) curve
strongly depends on the adopted p, value. This is illus-
trated in Fig. 4 for a chain with N = 55 and a = 0.85. We
have observed the same conductance behavior, as that
shown in Fig. 4, for larger approximants, up to N = 1597.
In Fig. 4(a) we show the transmission coeKcient for this
chain. The dashed vertical lines, labeled by roman nu-

merals, indicate three different possible values for the
chemical potential p. The corresponding conductance
curves are plotted in Fig. 4(b). If the chemical potential
is close to a set of transmission peaks, the conductance
exhibits several characteristic humps. This is the case of
curve I. Conversely, if the chemical potential is located in
a main gap region, the conductance increases monotoni-
cally with temperature to reach a limiting value and no

V. FINITE- TEMPERATURE EFFECTS
ON THE dc CONDUCTANCE

0.06-
E

0.04-

In order to obtain realistic outcomes &om the model,
it is convenient to include in our study finite-temperature
e6'ects. To this end we shall consider the following ex-
pression, earlier discussed by Engquist and Anderson, for
the dimensionless conductance of the system

f (——")7 (E)dE
J' (—~~~) [I —7.(E)]dE

The integration is extended over the periodic A super-
lattice band, n is the Fermi-Dirac distribution, and p
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FIG. 4. InSuence of the energy spectrum structure on the
finite-temperature conductance of the FSL. In (a) we show
the transmission coeKcient for a chain arith N = 55 and
cx = 0.85. The vertical dashed lines indicate the position of
the chemical potential in three different eases: (I) p = —0.628,
(II) —0.585, and (III) —0.4. The corresponding conductance
curves e(T, p) are shown in (b).
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relevant features are present at all, as seen in curve III.
Finally, if the chemical potential lies in an intermediate
region, a pronounced broad hump occurs due to the con-
tribution of nearest transmission peaks. Such a hump is
shown in curve II. Thus, it is clear that the occurrence
of conductance humps at low temperatures is intimately
related to the fragmented nature of the energy spectrum.

We will now prove that these different kinds of con-
ductance behaviors can be related to the position of the
chemical potential p by means of a closed analytical ex-
pression. To this end we must consider the expression
(9) in the low-temperature limit. It is well known that
in this limiting case the curve z(T, y, ) is dominated by
the weighting function ( Bn/—BE) which appears in both
integrands of (9). This function vanishes everywhere ex-
cept for energies close to the p value. For the sake of clar-
ity let us assume that the chemical potential is located
near a characteristic triplet of the transmission coeK-
cient. Now we introduce a further assumption by consid-
ering that the triplet structure can be roughly described
in the form

(10)

where p, is the characteristic strength of each transmis-
sion peak and E; denotes the position of the peak. Mak-
ing use of expression (10) the conductance (9) can be
approximated by

where P = 1/kT, b,E;—:E, —y, , and ur is the width
of the triplet measured on the energy scale. Thus, once

the chemical potential has been fixed, the evolution of
the conductance curve is determined by four basic pa-
rameters: the width u and the transmission strengths

The pre&actal nature of the spectrum implies that
the triplet width depends on the hierarchical level con-
sidered so that one may expect different conductance fea-
tures to appear at different energy scales. In Fig. 5 we

plot the conductance curve for a FSL whose chemical
potential is located inside a characteristic triplet of the
energy spectrum. The curve displays two different be-
haviors depending on the considered temperature scale.
At very low temperatures (kT 0.005), the curve ex-
hibits a prominent hump which displays finer structure.
The inset shows the dependence of this structure on small
variations of the sample chemical potential. The occur-
rence of the spike in the conductance hump is directly
related to the proximity of p to the transmission peak
located at E = —0.5484. On the other side, at higher
temperatures (kT 0.05), the conductance curve shows

a very broad maximum, due to the contribution of the
a main subband as a whole. As we see, the inQuence of
the spectrum structure on the finite-temperature conduc-
tance is rather significative. Most interestingly, we can
account for most details appearing in the conductance
curve by means of the analytical expression (11). As an
example, in Fig. 6 we compare the conductance curve
of Fig. 5, which has been obtained numerically Rom the
expression (9), with that corresponding to the analytical
expression (11)when suitable parameters for u and p; are
introduced. The agreement between both curves is ex-

cellent, especially if one considers that each peak appear-
ing in the considered triplet has a well-developed inner
structure and the b-function approach may result rather
crude. We wish to stress again that the parameters u and

p; used to evaluate expression (11) above completely de-
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FIG. 5. Conductance curve versus temperature for a FSL with N = 987, n = 0.75, and p = —0.5498. The inset gives a

close view of the dependence of the hump structure on the adopted chemical potential value. From top to bottom the energies

corresponding to the different curves range from p = —0.5495 to p = —0.5500 with a step of 0.0001. Note that the spike shifts

to higher temperatures as the chemical potential separates from the transmission peak located at E = —0.5484.
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FIG. 6. Comparison between the conductance obtained
&om the exact expression (solid line) and that obtained &om
the approximate analytical expression (11) (dashed line) with

p = —0.5493, u = 0.028, pq ——1.085, pq
——1.000, and

p3 ——1.533.

FIG. 7. Dependence of the high-temperature limit conduc-
tance (dots) on the sample length for several values of the
chemical diversity parameter. From top to bottom these val-

ues of a are 0.95, 0.90, 0.85, and 0.80. The solid lines give the
least-squares Sts describing a power-law behavior. The scal-
ing exponents are respectively given by —0.2968, —0.4245,
-0.5887, and -0.6986.

termine the energy spectrum of the FSL. In consequence,
the analytical expression (11)could provide a very useful
tool to fit experimentally measured conductance curves in
order to obtain &om them relevant parameters describ-
ing the underlying energy spectr»m structure, especially
those determining the fragmentation splitting pattern.
We have nnmericaQy checked that the validity of the ex-
pression (ll) can be extended to higher &agmentation
levels of the energy spectr~~m up to the third splitting
stage. Hence, we can coaMently conclude that expres-
sion (11) allows for an excellent characterization of the
inauence of the highly &agmented nature of the FSL en-
ergy spectrum on the dc conductance at low tempera-
tures.

f~(E)dE
J[l —r(E)]dE' Pm 0,

where the integration extends over the allowed band.
Note that expression (13) only depends on the model
parameters o. and N through the transmission coeKcient
7 (E). In Fig. 7 we show the behavior of the asymptotic
dc conductance of the FSL with the sample size for sev-
eral values of the parameter a. This plot clearly reveals
that, in the high-temperature limit, the conductance of
the FSL scales with the chain length according to a power
law, whose exponent strongly depends on the chemical
diversity of the superlattice.

C. Discussion of the obtained results

B. dc conductance in the high-temperature limit

In our numerical study we have observed. that the
lc(T, p) curves rapidly saturate reaching stable asymp-
totic values at about kT 0.5 for all the values of a
and N considered in our study. Note that this value is
of the order of the A perfect superlattice minibandwidth
0 = 4e ".Moreover, the asymptotic regime does not de-
pend on the position of the chemical potential at all. This
fact can be explained as follows. Let AE = E —p; hence
for pb, E « 1 we can expand the weighting function as

= —+ O[(PAE)'].

Since AE & 0 for every electron energy we consider,
the expansion above becomes valid whenever the tem-
perature satis6es the condition kT & O. In this case
expression (9) can be approximated by

The conductance behavior in the high-temperature
limit can be explained as due to the fact that when kT
equals the perfect superlattice minibandwidth 0, all elec-
trons contribute to the electronic transport in the super-
lattice growth direction. This result qualitatively agrees
with time-resolved photoluminescence spectra obtained
for GaAs/GaAIAs FSL's (Ref. 16) and allows us to es-
timate the temperature range for which our predicted
conductance humps may be observable. In fact, typi-
cal bandwidths for periodic superlattice minibands are
about 100 meV. Therefore, as can be seen &om Fig. 4(b),
the high-temperature limit will be achieved for tempera-
tures of about T = 1/10k —1100 K. As a consequence,
conduction humps due to the 6rst level of &agmentation
should be observable at T 200 K and conduction spikes
due to the third level of splitting should be predominant
at temperatures below T —20 K. These temperature
ranges are easily accessible to actual experimental ar-
rangements, hence indicating the possibility of experi-
mental observation of the pre&actal spectr»~ structure
in Snite approximants to the Fibonacci lattice.
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VI. CONCLUSIONS

In summary, we have studied a general system describ-
ing a 1D superlattice in which the constituent blocks are
arranged according to the Fibonacci sequence. To this
end we have derived a tight-binding description &om a
simple, continuous Schrodinger equation which allows us
to explicitly take into account the interaction between
nearest-neighbor blocks. The resulting energy spectrum
has been obtained by means of the usual transfer-matrix
techniques for a wide variety of possible realizations. The
obtained spectra show typical features of quasiperiodic
systems: The spectrum appears highly &agmented and
displays a well-developed. self-similar structure charac-
teristic of a pre&actal Cantor-like set. Another typ-
ical signature of quasiperiodic systems corresponds to
its spectral measure which can be roughly characterized
by means of the equivalent bandwidth of the spectrum.
Our results corroborate the generalized view support-
ing that almost all eigenstates are critical in Fibonacci
chains. From the analysis of the equivalent bandwith
dependence on the chemical diversity parameter n, we
have been able to conclude that the existence of mobil-
ity edges characterizing a metal-insulator transition are
not to be expected in this kind of superlattice. However,
the chemical composition of the superlattice has an in-
teresting eKect on the global structure of the spectrum;
i.e., it very precisely determines both the position and
widths of the main subbands and gaps. Hence, one can
think about the possibility of very accurately determining
the electronic structure of the sample by usual computer
controlled doping deposition techniques. The electronic
structure of the energy spectrum is naturally translated
to the magnitudes describing transport properties of the
superlattice through the transmission coeKcient. As has
been fully discussed in Sec. V, when the chemical poten-

tial is located near a transmission peak, the dc conduc-
tance of the FSL experiences a pronounced hump at low
temperatures. Therefore, we can determine the electronic
transport properties of the system at low temperatures
by properly selecting those parameters which character-
ize it: its chemical composition and sample length. This
interesting result reveals the possibility of a certain de-
gree of "engineering" of transport properties during sam-
ple growth. Such a possibility can be of considerable in-
terest in order to construct superlattice heterostructures
exhibiting Gne-tuning capabilities. As regards to conduc-
tance at high temperatures, we have found that it reaches
an asymptotic regime for kT values of order of the per-
fect superlattice minibandwidth. The asymptotic value
scales with the system size, and the characteristic expo-
nent only depends on the chemical diversity parameter o..
Since o. also determines the hierarchical splitting of the
electronic spectrum, it would be then possible to estimate
the &agmentation degree of the spectrum by measuring
the conductance of samples with difFerent lengths. Fi-
nally, we remark that an interesting issue emerging &om
this work concerns the possibility of using the analytical
expression (ll) in order to obtain significant informa-
tion about the fragmentation of the electronic spectrum
in quasiperiodic superlattices from experimentally mea-
sured conductances at low temperatures. To the best of
our knowledge this is a novel result which could be easily
applied as soon as suitable measures are available.
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