Publication:
Combination of geophysical prospecting techniques into areas of high protection value: Identification of shallow volcanic structures

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Timanfaya National Park is a volcanic area located in the southwest of Lanzarote Island (Canary Islands, Spain). Several lava tubes have been found in the lava flows but many others remain unknown. Its location and identification are important to mitigate collapse hazards in this touristic area. We present a new study about the location of recent lava tubes by the analysis and joint interpretation of around penetrating radar (GPR), microgravity and electromagnetic induction (EMI) data along the same profile over an area not previously surveyed. GPR data display a complex pattern of reflections up to ~10 m depth. The strongest hyperbolic reflections can be grouped in four different areas. Visual inspections carried out in the field allow confirming the occurrence of lava tubes at two of them. These reflections have been interpreted as the effect of the roof and bottom interfaces of several lava tubes. The microgravity survey defines a wide gravity low with several over-imposed minor highs and lows. Using the GPR data, a 2.5D gravity model has been obtained revealing four lava tubes. EMI data have been used to obtain an inverted resistivity model that displays four high resistivity areas that closely match the locations of the lava tubes derived from the previous methods. This resistivity model exhibits the lower resolution although reaches a deeper investigation depth (~20 m). The comparison of the results has revealed that joint interpretation of GPR, microgravity and EMI methods provides reliable models useful for the detection of unknown shallow lava tubes
Description
Keywords
Citation
Al-Oufi, A., Mustafa, H.A., Al-Tarazi, E., Rajab, J.A., 2008. Exploration of the extension of two lava tubes, faults and dikes using very low frequency-electromagnetic technique in NE Jordan. Acta Geophys. 56, 466–484. Ancochea, E., Hernán, F., Cendrero, A., Cantagrel, J.M., Fúster, J.M., Ibarrola, E., Coello, J., 1994. Constructive and destructive episodes in the building of a young Oceanic Island, La Palma, Canary Islands, and genesis of the Caldera de Taburiente. J. Volcanol. Geotherm. Res. 60, 243–262. Annan, P., 2003. GPR Principles, Procedures and Applications. Sensors and Software, Inc., Missisiaga (Canada). Arnoso, J., Benvent, M., Boss, M.S., Montesinos, F.G., Vieira, R., 2011. Verifying the body tide at the canary islands using tidal gravimetry observations. J. Geodyn. 51,358–365. Aziz, Z., van Geen, A., Stute, M., 2008. Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resour. Res. 44. Banda, E., Dañobeitia, J.J., Suriñach, E., Ansorge, J.,1981. Features of crustal structure under the Canary Islands. Earth Planet. Sci. Lett. 55, 11–24. Beres, M., Luetscher, M., Olivier, R., 2001. Integration of ground-penetrating radar and microgravimetric methods to map shallow caves. J. Appl. Geophys. 46 (4), 249–262. Bernard, J., 2003. Short Note on the Depth of Investigation of Electrical Methods. IRIS Instruments, Orleans, France (8 pp.). Blanco, I., Montesinos, F.G., García, A., Vieira, R., Villalaín, J., 2005. Paleomagnetic determination of Lanzarote from magnetic and gravity anomalies: implications for the early history of the Canary Islands. J. Geophys. Res. 110, B12102. Bobee, C., Schmutz, M., Camerlynck, C., Robain, H., 2010. An integrated geophysical study of the western part of the Rochechouart–Chassenon impact structure. Charente, France. Near Surf. Geophys. 4 (8), 259–270. Bravo, T., 1964. Geologia General de las Islas Canarias, vol. II. Goya, Santa Cruz de Tenerife (592 pp.). Cagnoli, B., Ulrych, T.J., 2001. Downflow amplitude decrease of ground penetrating radar reflections in base surge deposits. J. Volcanol. Geotherm. Res. 105, 25–34. Calvari, S., Pinkerton, H., 1998. Formation of lava tubes and extensive flow-field during the 1991–1993 eruption of Mount Etna. J. Geophys. Res. 103, 27,291–27,301. Camacho, A.G.,Montesinos, F.G., Vieira, R., Arnoso, J., 2001.Modelling of crustal anomalies of Lanzarote (Canary Islands) in light of gravity data. Geophys. J. Int. 147 (2),403–414. Carracedo, J.C., Rodríguez Badiola, E., Soler, V., 1992. The 1730–1736 eruption of Lanzarote, Canary Islands: a long, high-magnitude basaltic fissure eruption. J. Volcanol. Geotherm. Res. 53, 239–250. Carracedo, J.C., Singer, B., Jicha, B., Guillou, H., Rodríguez Badiola, E.,Meco, J., Pérez-Torrado, F. J., Gimeno, D., Socorro, S., Laínez, A., 2003. La erupción y el tubo volcánico del volcán Corona (Lanzarote, Islas Canarias). Estud. Geol. Madrid 59, 277–302. Coello, J., Cantagrel, J.M., Hernán, F., Fúster, J.M., Ibarrola, E., Ancochea, E., Casquet, C., Jamond, C., Díaz de Terán, J.R., Cendrero, A., 1992. Evolution of the eastern volcanic ridge of the Canary Islands based on new K–Ar data. J. Volcanol. Geotherm. Res. 53, 251–274. Courtland, L., Kruse, S., Connor, C., 2013. Violent Strombolian or not? Using groundpenetrating radar to distinguish deposits of low- and high-energy scoria cone eruptions. Bull. Volcanol. 75, 1–13. Dañobeitia, J.J., Canales, J.P., 2000. Magmatic underplating in the Canary Archipelago. J. Volcanol. Geotherm. Res. 103, 27–41. Deroussi, S., Diament, M., Feret, J.B., Nebut, T., Staudacher, Th., 2009. Localization of cavities in a thick lava flow by microgravimetry. J. Volcanol. Geotherm. Res. 184, 193–198. EM1DFM, 2000. A Program Library for Forward Modelling and Inversion of Frequency Domain Electromagnetic Data over 1D Structures, Developed by the UBC-geophysical Inversion Facility. Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia. Everett, M.E., Meju, M.A., 2005. Near-surface controlled-source electromagnetic induction: background and recent advances. In: Rubin, Y., Hubbard, S.S. (Eds.), Hydrogeophysics. Springer, New York, pp. 157–183. Farquharson, C.G., Oldenburg, D.W., Rough, P.S., 2003. Simultaneous 1D inversion of loop–loop electromagnetic data for magnetic susceptibility and electrical conductivity.Geophysics 68, 1857–1869. Giannopoulos, A., 2005. Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 19, 755–762. Gomez, C., Lavigne, F., Lespinasse, N., Hadmoko, D.S., Wassmer, P., 2008. Longitudinal structure of pyroclastic-flow deposits, revealed by GPR survey, at Merapi Volcano,Java, Indonesia. J. Volcanol. Geotherm. Res. 176, 439–447. Gómez-Ortiz, D., Martín-Velázquez, S., Martín-Crespo, T., Márquez, A., Lillo, J., López, I., Carreño, F., 2006. Characterization of volcanic materials using ground penetrating radar: a case study at Teide volcano (Canary Islands, Spain). J. Appl. Geophys. 59 (1), 63–78. Gómez-Ortiz, D., Martín-Velázquez, S., Martín-Crespo, T., Márquez, A., Lillo, J., López, I., Carreño, F., Martín-González, F., Herrera, R., De Pablo, M.A., 2007. Joint application of ground penetrating radar and electrical resistivity imaging to investigate volcanic materials and structures in Tenerife (Canary Islands, Spain). J. Appl. Geophys. 62, 287–300. Grimm, R.E., Heggy, E., Clifford, S., Dinwiddie, .,McGinnis, R., Farrell, D., 2006. Absorption and scattering in ground-penetrating radar: analysis of the Bishop Tuff. J. Geophys.Res. 111, E06S02. Guillou, H., Carracedo, J.C., Pérez-Torrado, F., Rodríguez-Badiola, E., 1996. K–Ar ages and magnetic stratigraphy of a hotspot induced, fast grown oceanic island: El Hierro,Canary Islands. J. Volcanol. Geotherm. Res. 73, 141–155. Heggy, E., Clifford, S.M., Grimm, R.E., Dinwiddie, C., Wyrick, D.Y., Hill, B.E., 2006. Groundpenetrating radar sounding in mafic lava flows: assessing attenuation and scattering losses in Mars-analog volcanic terrains. J. Geophys. Res. 111, E06S04. Hernández, P.A., Padilla, G., Padrón, E., Pérez, N.M., Calvo, D., Nolasco, D., Melián, G., Barrancos, J., Dionis, S., Rodríguez, F., Sumino, H., 2012. Analysis of long- and shortterm temporal variations of the diffuse CO2 emission from Timanfaya volcano, Lanzarote, Canary Islands. Appl. Geochem. 27, 2486–2499. Kruger, J.M., Smith, A.C.,Welhan, J.A., 2002. Microgravity and magnetic detection of mafic dikes, fissures, and lava tubes in basalt: potential barriers and fast-flow paths for contaminant migration within the eastern Snake River Plain, Idaho. Society of Exploration Geophysicists Annual Meeting. Expanded Technical Program Abstracts with Biographies, 72 (Tulsa, Ok, USA). Leucci, G., De Giorgi, L., 2010.Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (Marina Di Capilungo, Lecce, Italy). Explor. Geophys. 41, 178–188. Marinoni, L.B., Pasquare, G., 1994. Tectonic evolution of the emergent part of a volcanic ocean island: Lanzarote, Canary Islands. Tectonophysics 239, 111–135. McNeill, J.D., 1980. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers, Technical Note TN-6. Geonics Ltd., Ontario, Canada. Miyamoto, H., Haruyama, J., Rokugawa, S., Onishi, K., Toshioka, T., Koshinuma, J., 2003. Acquisition of ground penetrating radar data to detect lava tubes; preliminary results on the Komoriana Cave at Fuji Volcano in Japan. Bull. Eng. Geol. Environ. 62, 281–288. Miyamoto, H.,Haruyama, J., Kobayashi, T., Suzuki, K., Okada, T.,Nishibori, T., Showman, A.P., Lorenz, R., Mogi, K., Crown, D.A., Rodriguez, J.A.P., Rokugawa, S., Tokunaga, T., Masumoto, K., 2005. Mapping the structure and depth of lava tubes using ground penetrating radar. Geophys. Res. Lett. 32, L21316. Montesinos, F.G., Arnoso, J., Vélez, E., Benavent, M., 2013. Characterization of the crustal structure of Timanfaya volcanic area (Lanzarote, Spain) through gravity study. International Association of Geodesy Scientific Assembly. Potsdam, Germany, pp. 1–6. Nettleton, L., 1939. Determination of density for reduction of gravimeter observations. Geophysics 4, 176–183. Paine, J.G., 2003. Determining salinization extent, identifying salinity sources, and estimating chloridemass using surface, borehole, and airborne electromagnetic inductionmethods. Water Resour. Res. 39 (3). Pokorny, J., Suza, P., Hrouda, F., 2004. Anisotropy of magnetic susceptibility of rocks measured in variable weak magnetic fields using the KLY-4S Kappabridge. In: Martín-Hernández, F., Lüneburg, C., Aubourg, C., Jackson, M. Eds.), Magnetic Fabric: Methods and Applications. Geological Society of London, London, pp. 69–76. Rasmussen, R., Pedersen, L.B., 1979. End corrections in potential fieldmodelling. Geophys. Prospect. 27, 749–760. Reynolds, J.M., 1997. An Introduction to Applied and Environmental Geophysics. John Wiley and Sons, Chichester, U.K. Russell, J.K., Stasiuk, M.V., 1997. Characterization of volcanic deposits with groundpenetrating radar. Bull. Volcanol. 58, 515–527. Rust, A.C., Russell, J.K., 2000. Detection of welding in pyroclastic flows with ground penetrating radar: insights from field and forward modeling data. J. Volcanol. Geotherm. Res. 95, 23–34. Sandmeier, K.J., 2007. ReflexWmanual v.6.1, Sandmeier Scientific Software. http://www.sandmeier-geo.de/download.html (Last accessed: February 14, 2014). Serrano, A., Perucho, A., Ola11a, C., Estaire, J., 2007. Foundations in volcanic zones. 14th European Conference on Soils Mechanics and Geotechnical Engineering. Millpress, Rotterdam, Netherland. Solla, M., Lorenzo, H., Rial, F.I., Novo, A., 2012. Ground-penetrating radar for the structural evaluation of masonry bridges: results and interpretational tools. Constr. Build. Mater. 29, 458–465. Talwani, M., Worzel, J.L., Landisman, M., 1959. Rapid gravity computations for twodimensional bodies with application to the Mendocino submarine fracture zone. J. Geophys. Res. 64, 49–59. Telford, W.M., Geldart, L.P., Sheriff, R.E., Keys, D.A., 1990. Applied Geophysics. Cambridge University Press, Cambridge, U.K. Thierry, P., Debeblia, N., Bitri, A., 2005. Geophysical and geological characterization of karst hazards in urban environments: application to Orléans (France). Bull. Eng. Geol. Environ. 64 (2), 139–150. Valois, R., Camerlynck, C., Dhemaied, A., Guerin, R., Hovhannissian, G., Plagnes, V., Rejiba, F., Robain, H., 2011. Assessment of doline geometry using geophysics on the Quercy plateau karst (South France). Earth Surf. Process. Landf. 36, 1183–1192. Vonlanthen, P., Kunze, K., Burlini, L., Grobety, B., 2006. Seismic properties of the upper mantle beneath Lanzarote (Canary Islands): model predictions based on texture measurements by EBSD. Tectonophysics 428, 65–85.
Collections