Publication:
Competing charge ordering and Mott phases in a correlated Sn/Ge(111) two-dimensional triangular lattice

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-09-06
Authors
Cortés, R
Tejeda, A.
Lobo Checa, J.
Didiot, C.
Kierren, B.
Malterre, D.
Merino, J.
Flores, F.
Michel, E. G.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We take advantage of complementary high-resolution experimental techniques and theoretical tools to get insight into the alpha-Sn/Ge(111) triangular lattice surface consisting of sp electrons. We report a (3 x 3) phase, characterized by a charge ordering settled by electronic correlation, which appears between the known metallic-(3 x 3) and Mott insulator phases. We identify the atomistic mechanism behind the stabilization of this phase and interpret these findings on the basis of theoretical calculations. We disentangle the role of the various degrees of freedom in the stability of the different phases found and describe the stepwise surface changes between the metallic and Mott insulating phases.
Description
© 2013 American Physical Society. This work was funded by MICINN (MAT2010-21156-C03-02, MAT2011-22491, and FIS2011-23230), SurMott ANR, and CNRS PICS. We are grateful to L. Patthey of the SIS beamline at the Swiss Light Source for his help during the photoemission experiments.
Unesco subjects
Keywords
Citation
1. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974). 2. F. Gebhard, The Mott Metal-Insulator Transition (Springer, New York, 1997). 3. F. Venturini, M. Opel, T. P. Devereaux, J. K. Freericks, I. Tutto, B. Revaz, E. Walker, H. Berger, L. Forró, and R. Hackl, ´ Phys. Rev. Lett. 89, 107003 (2002). 4. L. Cano-Cortés, J. Merino, and S. Fratini, Phys. Rev. Lett. 105, 036405 (2010). 5. H.-Y. Yang, A. M. Laüchli, F. Mila, and K. P. Schmidt, Phys. Rev. Lett. 105, 267204 (2010). 6. P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006). 7. K. M. F. Kagawa and K. Kanoda, Nature (London) 436, 534 (2005). 8. N. J. DiNardo, T. M. Wong, and E. W. Plummer, Phys. Rev. Lett. 65, 2177 (1990). 9. H. H. Weitering, X. Shi, P. D. Johnson, J. Chen, N. J. DiNardo, and K. Kempa, Phys. Rev. Lett. 78, 1331 (1997). 10. L. A. Cardenas, Y. Fagot-Revurat, L. Moreau, B. Kierren, and D. Malterre, Phys. Rev. Lett. 103, 046804 (2009). 11. L. I. Johansson, F. Owman, and P. Märtensson, Surf. Sci. 360, L478 (1996). 12. R. Cortés, A. Tejeda, J. Lobo, C. Didiot, B. Kierren, D. Malterre, E. G. Michel, and A. Mascaraque, Phys. Rev. Lett. 96, 126103 (2006). 13. J. M. Carpinelli, H. H. Weitering, M. Bartkowiak, R. Stumpf, and E. W. Plummer, Phys. Rev. Lett. 79, 2859 (1997). 14. A. Mascaraque, J. Avila, J. Alvarez, M. C. Asensio, S. Ferrer, and E. G. Michel, Phys. Rev. Lett. 82, 2524 (1999). 15. A. Tejeda, R. Cortés, J. Lobo-Checa, C. Didiot, B. Kierren, D. Malterre, E. G. Michel, and A. Mascaraque, Phys. Rev. Lett. 100, 026103 (2008). 16. S. Modesti, L. Petaccia, G. Ceballos, I. Vobornik, G. Panaccione, G. Rossi, L. Ottaviano, R. Larciprete, S. Lizzit, and A. Goldoni, Phys. Rev. Lett. 98, 126401 (2007). 17. T. Hirahara, T. Komorida, Y. Gu, F. Nakamura, H. Idzuchi, H. Morikawa, and S. Hasegawa, Phys. Rev. B 80, 235419 (2009). 18. G. Profeta and E. Tosatti, Phys. Rev. Lett. 98, 086401 (2007). 19. G. Li, P. Höpner, J. Schäfer, C. Blumenstein, S. Meyer, A. Bostwick, E. Rotenberg, R. Claessen, and W. Hanke, Nat. Commun. 4, 1620 (2013). 20. S. Colonna, F. Ronci, A. Cricenti, and G. LeLay, Phys. Rev. Lett. 101, 186102 (2008). 21. H. Morikawa, S. Jeong, and H. W. Yeom, Phys. Rev. B 78, 245307 (2008). 22. T. Shirasawa, H. Tochihara, K. Kubo, W. Voegeli, and T. Takahashi, Phys. Rev. B 81, 081409(R) (2010). 23. S. Colonna, F. Ronci, A. Cricenti, and G. LeLay, Phys. Rev. Lett. 102, 159602 (2009). 24. H. Morikawa and H. W. Yeom, Phys. Rev. Lett. 102, 159601 (2009). 25. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007). 26. A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, and S. Uchida, Phys. Rev. B 62, 4137 (2000). 27. J. Avila, A. Mascaraque, E. G. Michel, M. C. Asensio, G. LeLay, J. Ortega, R. Pérez, and F. Flores, Phys. Rev. Lett. 82, 442 (1999). 28. R. I. G. Uhrberg, H. W. Zhang, and T. Balasubramanian, Phys. Rev. Lett. 85, 1036 (2000). 29. R. I. G. Uhrberg and T. Balasubramanian, Phys. Rev. Lett. 81, 2108 (1998). 30. A. Cano, A. P. Levanyuk, and E. G. Michel, Nanotechnology 16, 325 (2005). 31. A. V. Melechko, J. Braun, H. H. Weitering, and E. W. Plummer, Phys. Rev. B 61, 2235 (2000). 32. A. Cano, A. P. Levanyuk, and E. G. Michel, Z. Kristallogr. 220, 663 (2005). 33. R. M. Feenstra, S. Gaan, G. Meyer, and K. H. Rieder, Phys. Rev. B 71, 125316 (2005). 34. D. M. Riffe and G. K. Wertheim, Phys. Rev. B 61, 2302 (2000). 35. R. Pérez, J. Ortega, and F. Flores, Phys. Rev. Lett. 86, 4891 (2001). 36. D. Farías, W. Kaminski, J. Lobo, J. Ortega, E. Hulpke, R. Pérez, F. Flores, and E. G. Michel, Phys. Rev. Lett. 91, 016103 (2003). 37. E. Pehlke and M. Scheffler, Phys. Rev. Lett. 71, 2338 (1993). 38. J. Ortega, R. Pérez, and F. Flores, J. Phys.: Condens. Matter 12, L21 (2000). 39. S. de Gironcoli, S. Scandolo, G. Ballabio, G. Santoro, and E. Tosatti, Surf. Sci. 454-456, 172 (2000). 40. O. Pulci, M. Marsili, P. Gori, M. Palummo, A. Cricenti, F. Bechstedt, and R. del Sole, Appl. Phys. A 85, 361 (2006). 41. F. Flores, J. Ortega, R. Pérez, A. Charrier, F. Thibaudau, J.- M. Deveber, and J.-M. Themlin, Prog. Surf. Sci. 67, 299 (2001). 42. X. Y. Zhang, M. J. Rozenberg, and G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993). 43. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 44. L. Fritsche, Phys. Rev. B 33, 3976 (1986). 45. Note that the quoted value is slightly larger than the value determined from Fermi surface analysis in Ref. 46, which is attributed to the different method used. 46. A. Tejeda, R. Cortés, J. Lobo, E. G. Michel, and A. Mascaraque, J. Phys.: Condens. Matter 19, 355008 (2007). 47A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996). 48. Upon cooling at 77 K, local COI-(3 × 3) regions are observed (above the transition temperature determined from an averaging technique like photoemission). STS from these areas is shown as it exhibits better defined features than at lower temperatures.
Collections