Publication:
Effect of photoelectron mean free path on the photoemission cross-section of Cu(111) and Ag(111) Shockley states

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-12-13
Authors
Lobo-Checa, Jorge
Michel, Enrique G.
Krasovskii, Eugene E.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The photoemission cross-section of Shockley states of Cu(111) and Ag(111) surfaces is studied over a wide range of photon energies. The constant initial-state spectra are very different for the two surfaces and show rich structure that does not follow the generally accepted nearly free electron model for the final state. Angle resolved photoemission data are interpreted within a one-step ab initio theory, revealing a multiple Bloch wave structure of photoemission final states. The inelastic scattering parameter-optical potential-is determined, and the energy dependence of the mean free path of the outgoing electron is calculated, which turns out to be the key for the understanding of the photoemission cross-section curve. These are essential steps for future exploration of wave function perturbations in the presence of surface nanostructures.
Description
© 2011 American Physical Society. We acknowledge J. Osterwalder and T. Greber for their continuous support and also the help of the beamline staffs from both the SRC and SLS synchrotrons during experiments. This work was supported by the Spanish Ministerio de Ciencia e Innovación (Grants No. FIS2010-19609-C02-02, FIS2008- 00399, MAT2010-21156-C03-01, and MAT2010-21156-C03-02 and through the Research Program Ramon y Cajal) and the Basque Government (IT-257-07). The SRC is funded by the National Science Foundation (Award No. DMR-0084402).
Unesco subjects
Keywords
Citation
1. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd ed. (Springer, Berlin, 2003). 2. P. M. Echenique, R. Berndt, E. V. Chulkov, Th. Fauster, A. Goldmann, and U. Höfer, Surf. Sci. Rep. 52, 219 (2004). 3. J. H. Dil, F. Meier, J. Lobo-Checa, L. Patthey, G. Bihlmayer, and J. Osterwalder, Phys. Rev. Lett. 101, 66802 (2008). 4. F. Schiller, R. Keyling, E. V. Chulkov, and J. E. Ortega, Phys. Rev. Lett. 95, 126402 (2005). 5. A. Mugarza and J. E. Ortega, J. Phys. Condens. Matter 15, S3281 (2003). 6. X. Y. Wang, X. J. Shen, and R. M. Osgood Jr., Phys. Rev. B 56, 7665 (1997). 7. S. G. Louie, P. Thiry, R. Pinchaux, Y. Pétroff, D. Chandesris, and J. Lecante, Phys. Rev. Lett. 44, 549 (1980). 8. S. D. Kevan and R. H. Gaylord, Phys. Rev. Lett. 57, 2975 (1986). 9. S. D. Kevan and R. H. Gaylord, Phys. Rev. B 36, 5809 (1987). 10. T. C. Hsieh, P. John, T. Miller, and T. C. Chiang, Phys. Rev. B 35, 3728 (1987). 11. A. Samsavar, T. Miller, and T. C. Chiang, J. Phys. Condens. Matter 2, 1141 (1990). 12. S. D. Kevan, Phys. Rev. B 34, 6713 (1986). 13. See for example A. Bansil and M. Lindroos, Phys. Rev. Lett. 83, 5154 (1999); H. M. Fretwell et al., ibid. 84, 4449 (2000). 14. E. E. Krasovskii and W. Schattke, Phys. Rev. Lett. 93, 027601 (2004). 15. E. E. Krasovskii, W. Schattke, P. Jir ícek, M. Vondrácek, O. V. Krasovska, V. N. Antonov, A. P. Shpak, and I. Bartos, Phys. Rev. B 78, 165406 (2008). 16. E. E. Krasovskii, V. M. Silkin, V. U. Nazarov, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 82, 125102 (2010). 17. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985). 18. P. J. Feibelman and D. E. Eastman, Phys. Rev. B 10, 4932 (1974). 19. E. E. Krasovskii and W. Schattke, Phys. Rev. B 59, 15609 (1999). 20. E. E. Krasovskii and W. Schattke, Phys. Rev. B 56, 12874 (1997). 21. E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B 59, 10504 (1999). 22. J. A. Knapp, F. J. Himpsel, and D. E. Eastman, Phys. Rev. B 19, 4952 (1979). 23. H. J. Levinson and E. W. Plummer, Phys. Rev. B 24, 628 (1981). 24. R. A. Bartynski, E. Jensen, T. Gustafsson, and E. W. Plummer, Phys. Rev. B 32, 1921 (1985). 25. N. Barberan and J. E. Inglesfield, J. Phys. C 14, 3114 (1981). 26. P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982)
Collections