Publication:
Structural origin of the Sn 4d core level line shape in Sn/Ge(111)-(3 x 3)

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-01-18
Authors
Tejeda, A.
Cortés, R
Lobo Checa, J.
Didiot, C.
Kierren, B
Malterre, D.
Michel, E. G.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
High-resolution photoemission of the Sn 4d core level of Sn/Ge(111)-(3x3) resolves three main components in the line shape, which are assigned to each of the three Sn atoms that form the unit cell. The line shape found is in agreement with an initial state picture and supports that the two down atoms are inequivalent. In full agreement with these results, scanning tunnel microscopy images directly show that the two down atoms are at slightly different heights in most of the surface, giving rise to an inequivalent-down-atoms (3x3) structure. These results solve a long-standing controversy on the interpretation of the Sn 4d core-level line shape and the structure of Sn/Ge(111)-(3x3).
Description
© 2008 The American Physical Society. We thank J. M. Rojo for fruitful discussions. This work was supported by MEC and CAM (Spain) (Grants No. FIS2006-04552, No. FIS2005-00747, and No. and European Social Fund). Part of this work was performed at the Swiss Light Source, Villigen, Switzerland.
Unesco subjects
Keywords
Citation
[1] J. C. Phillips and M. F. Thorpe, Phase Transitions and Self-Organization in Electronic and olecular Networks (Kluwer, New York, 2001). [2] J. M. Carpinelli et al., Phys. Rev. Lett. 79, 2859 (1997). [3] A. Mascaraque et al., Phys. Rev. Lett. 82, 2524 (1999). [4] J. Avila et al., Phys. Rev. Lett. 82, 442 (1999). [5] O. Bunk et al., Phys. Rev. Lett. 83, 2226 (1999). [6] L. Floreano et al., Phys. Rev. B 64, 075405 (2001). [7] R. Cortés et al., Phys. Rev. Lett. 96, 126103 (2006). [8] D. Farı´as et al., Phys. Rev. Lett. 91, 016103 (2003). [9] J. S. Okasinski et al., Phys. Rev. B 69, 041401(R) (2004). [10] F. Ronci et al., Phys. Rev. Lett. 95, 156101 (2005). [11] Y. Fukaya, A. Kawasuso, and A. Ichimiya, Surf. Sci. 600, 4086 (2006). [12] A. Tejeda et al., J. Phys. Condens. Matter 19, 355008 (2007). [13] S. de Gironcoli et al., Surf. Sci. 454 – 456, 172 (2000). [14] L. Jurczyszyn et al., Surf. Sci. 482 – 485, 1350 (2001). [15] J. Ortega, R. Pérez, and F. Flores, J. Phys. Condens. Matter 14, 5979 (2002). [16] P. Gori, O. Pulci, and A. Cricenti, J. Phys. IV 132, 91 (2006). [17] M. Göthelid et al., Phys. Rev. B 52, R14352 (1995). [18] R. I. G. Uhrberg, H. W. Zhang, and T. Balasubramanian, Phys. Rev. Lett. 85, 1036 (2000). [19] R. I. G. Uhrberg and T. Balasubramanian, Phys. Rev. Lett. 81, 2108 (1998). [20] M. Goshtasbi Rad et al., Surf. Sci. 477, 227 (2001). [21] L. Petaccia et al., Phys. Rev. B 63, 115406 (2001); 64, 193410 (2001). [22] T.-L. Lee et al., Phys. Rev. Lett. 96, 046103 (2006). [23] F. Flores et al., Prog. Surf. Sci. 67, 299 (2001). [24] G. Profeta and E. Tosatti, Phys. Rev. Lett. 98, 086401 (2007). [25] S. Modesti et al., Phys. Rev. Lett. 98, 126401 (2007). [26] I. Horcas et al., Rev. Sci. Instrum. 78, 013705 (2007). [27] R P ijS i M ij= P ijM ij, where M i are the experimental values and S i is the fit. [28] The relative intensities are affected by PED effects, but the required change is larger than the observed intensity variations due to this effect [21]. [29] R. Cortés et al. (to be published). [30] Lorentzian widths may be affected by the oxidation state due to changes of the Auger decay rate [31]. However, our sensitivity is not enough to determine independent LWs for each C2, C3, and C4 doublet. [31] J. J. Paggel et al., Surf. Sci. 414, 221 (1998). [32] The residual observed around 25–26 eV is probably due to an additional defect component. [33] V. Dudr et al., Phys. Rev. B 70, 155334 (2004). [34] A. V. Melechko et al., Phys. Rev. B 61, 2235 (2000). [35] A. V. Melechko et al., Phys. Rev. B 64, 235424 (2001). (a)
Collections