Publication:
Infinitesimally Lipschitz functions on metric spaces

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
For a metric space X, we study the space D∞(X) of bounded functions on X whose infinitesimal Lipschitz constant is uniformly bounded. D∞(X) is compared with the space LIP∞(X) of bounded Lipschitz functions on X, in terms of different properties regarding the geometry of X. We also obtain a Banach-Stone theorem in this context. In the case of a metric measure space, we also compare D∞(X) with the Newtonian-Sobolev space N1,∞(X). In particular, if X supports a doubling measure and satisfies a local Poincaré inequality, we obtain that D∞(X) = N1,∞(X).
Description
Unesco subjects
Keywords
Citation
[Am] L. Ambrosio, P. Tilli: Topics on Analysis in Metri Spaces. Oxford Lecture Series in Mathematics and its Applications 25. Oxford University Press, Oxford, (2004). [BRZ] Z. M. Balogh, K. Rogovin, T. Zürcher: The Stepanov Differentiability Theorem in Metric Measure Spaces. J. Geom. Anal. 14 no. 3, (2004), 405–422. [Ch] J. Cheeger: Differentiability of Lipschitz Functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), 428–517. [F] G.B. Folland: Real Analysis, Modern Techniques and Their Applications. Pure and Applied Mathematics (1999). [Fu] B. Fuglede : Extremal length and functional completion. Acta. Math. 98 (1957), 171–219. [GJ1] M. I. Garrido, J. A. Jaramillo: A Banach-Stone Theorem for Uniformly Continuous Functions. Monatshefte für mathematik. 131 (2000), 189–192. [GJ2] M. I. Garrido, J. A. Jaramillo: Homomorphism on Function Lattices. Monatshefte fü mathematik. 141 (2004), 127–146. [GJ3] M. I. Garrido, J. A. Jaramillo: Lipschitz-type functions on metric spaces. J. Math. Anal and Appl. 340 (2008), 282–290. [GiJe] L. Gillman, J. Jerison: Rings of Continuous Functions. Springer-Verlag, New-York (1976). [Ha1] P. Haj lasz: Sobolev spaces on metric-measure spaces. Contemp. Math. 338 (2003), 173–218. [Ha2] P. Haj lasz: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403–415. [He1] J. Heinonen: Lectures on Analysis on Metric Spaces. Springer (2001). [He2] J. Heinonen: Nonsmooth calculus. Bull. Amer. Math. Soc. 44 (2007), 163–232. [HK] J. Heinonen, P. Koskela: Quasiconformal maps on metric spaces with controlled geometry. Acta Math. 181 (1998), 1–61. [I] J. R. Isbell: Algebras of uniformly continuous functions. Ann. Math. 68 (1958), 96–125. [JJRRS] E. Järvenp¨a¨a, M. Järvenp¨a¨a, N. Shanmugalingam K. Rogovin, and S. Rogovin: Measurability of equivalence classes and MECp-property in metric spaces. Rev. Mat. Iberoamericana 23 (2007), 811–830. [KMc] P. Koskela, P. MacManus: Quasiconformal mappings and Sobolev spaces. Studia Math. 131 (1998), 1–17. [K] S. Keith: A differentiable structure for metric measure spaces. Adv. Math. 183 (2004), 271–315. [Ma] V. Magnani: Elements of Geometric Measure Theory on sub-Riemannian groups, (2002). Dissertation. Scuola Normale Superiore di Pisa. [M] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces: Fractals and recti-fiability. Cambridge studies in Advance Mathematics, Cambridge University Press 44 (1995). [Me] R. E. Megginson, R. E.: An introduction to Banac Space Theory. Graduate Texts in Mathematics, 183. Springer-Verlag, New York , 1998. [S] S. Semmes: Some Novel Types of Fractal Geometry. Oxford Science Publications (2001). [Sh1] N. Shanmugalingam: “Newtonian Spaces: An extension of Sobolev spaces to Metric Measure Spaces” Ph. D. Thesis, University of Michigan (1999), http: math.uc.edu/ nages/papers.html. [Sh2] N. Shanmugalingam: Newtonian Spaces: An extension of Sobolev spaces to Metric Measure Spaces. Rev. Mat. Iberoamericana, 16 (2000), 243–279. [W] N. Weaver: Lipschitz Algebras. Singapore: World Scientific (1999)
Collections