Publication:
Capacitor-based isolation amplifiers for harsh radiation environments

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-11-12
Authors
Zong, Yi
Agapito Serrano, Juan Andrés
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Commercial-off-the-shelf (COTS) capacitor-based isolation amplifiers were irradiated at the Portuguese Research Reactor (PRR) in order to determine its tolerance to the displacement damage and total ionising dose (TID). The set of experimental data shows that some of these devices are suitable for zones inside future nuclear facilities where the expected total radiation damage would be below 2.2 × 10 13 1 ‐ MeV neutron / cm 2 and 230 Gy (Si). However, some drawbacks must be taken into account by the electronic designers such as the increase of the output offset voltage and the slight modification of the transmission gain.
Description
Unesco subjects
Keywords
Citation
[1] M. Rowe, Isolation boosts safety and integrity, Test & Measurement World. URL http://www.reed-electronics.com/tmworld/article/CA235286 [2] A. J. Peyton, V. Walsh, Analog Electronic with Op Amps: A Source Book of Practical Circuits, Cambridge University Press, Cambridge (UK), 1993, iSBN: 0-521-3305-X.7 [3] G. Messenger, M. Ash, The Effects of Radiation on Electronic Systems, 2nd Edition, Van Nostrand Reinhold, New York City (USA), 1992, iSBN: 0-442-23952-1. [4] V. Remondino, Radiation damage in amplifiers used for quench detection in a superconducting accelerator, in: Proceedings of the 3rd European Conference on Radia- tion and its Effects on Components and Systems (RADECS95), RADECS Association, French Space Agency (CNES), Arcachon (France), 1995, pp. 89–93, iSBN: 0-7803-3093-5. doi:10.1109/RADECS.1995.509757. [5] Y. Zong, F. J. Franco, J. A. de Agapito, A. C. Fernandes, J. G. Marques, Radiation toler- ant isolation amplifiers for temperature measurement, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-ment 568 (2) (2006) 869–876. doi:10.1016/j.nima.2006.09.007. [6] Texas instruments website, On-line at http://www.ti.com. [7] B. Carter, R. Mancini, Op Amps for Everyone, 3rd Edition, Texas Instruments, USA, 2009, Ch. 13: Understanding Op Amp Parameters, pp. 220–221, iSBN: 978-1-85617-505-0. [8] J. G. Marques, A. C. Fernandes, I. G. Gon¸calves, A. J. G. Ramalho, Test facility at the portuguese research reactor for irradiations with fast neutrons, in: E. Ragel, R. Tamayo, C. Sánchez (Eds.), Proceedings of the 5 297th Workshop on Radiation Effects on Components and Systems (RADECS04), RADECS Association, Instituto acional de Tecnica Aeroespacial (INTA), Madrid (Spain), 2004, pp. 335–338, iSBN 84-930056-1-4. [9] C. Lee, B. Rax, A. Johnston, Hardness assurance and testing techniques for high resolution (12 to 16-bit) analog-to-digital converters, IEEE Transactions on Nuclear Science 42 (6) (1995) 1681–1688, iSSN: 0018-9499. doi:10.1109/23.488766. [10] L. Bonora, J. David, An attempt to define conservative conditions for total dose evaluation of bipolar ics, IEEE Transactions on Nuclear Science 44 (6) (1997) 1974–1980, iSSN: 0018-9499. doi:10.1109/23.658972. [11] C. Lee, A. H. Johnston, Comparison of total dose effects on micropower op-amps: bipolar and cmos, in: Proceedings of the IEEE Radiation Effects Data Workshop, IEEE Nuclear and7 Plasma Sciences Society, The Institute of Electrical and Electronics Engineers (IEEE) , Inc., Newport Beach, CA, USA, 1998, pp. 132–136. doi:10.1109/REDW.1998.731492. [12] R. Pease, M. Gehlhausen, J. Krieg, J. Titus, T. Turflinger, D. Emily, L. Cohn, Evaluation of proposed hardness assurance method for bipolar linear circuits with enhanced low dose rate sensitivity (eldrs), IEEE Transactions on Nuclear Science 45 (6) (1998) 2665–2672, iSSN: 0018-9499. doi:10.1109/23.736512. [13] R. Pease, J. Krieg, M. Gehlhausen, D. Platteter, J. Black, Total dose induced increase in input offset voltage in jfet input operational amplifiers, in: Proceedings of the 5th European Conference on Radiation and its Effects on Components and Systems (RADECS99), RADECS Association, French Atomic Energy Commission (CEA), Fontevraud (France), 1999, pp. 569–572, iSBN: 0-7803-5726-4. doi:10.1109/RADECS.1999.858649. [14] D. M. Hiemstra, High total dose performance of various commercial off the shelf operational amplifiers during irradiation, in: Proceedings of the IEEE Radiation Effects Data Work-shop, IEEE Nuclear and Plasma Sciences Society, The Institute of Electrical and Electron-ics Engineers (IEEE) , Inc., Reno, Nevada (USA), 1999, pp. 32–38, iSBN: 0-7803-6474-0. doi:10.1109/REDW.2000.896266. [15] J. Agapito, J. Casas-Cubillos, F. Franco, B. Palan, M. Rodriguez Ruiz, Rad-tol field electronics for the lhc cryogenic system, in: Proceedings of the 6th European Conference on Radiation and its Effects on Components and Systems (RADECS03), RADECS Association, European Space Agency (ESA), Noordwijk aan Zee (The Netherlands), 2003, pp. 653–657, iSSN: 0379-6566, ISBN: 92-9092-846-8. [16] J. Srour, J. McGarrity, Radiation effects on microelectronics in space, Proceedings of the IEEE 76 (10) (1988) 1443–1469, iSSN: 0018-9219. doi:10.1109/5.90114. [17] F. Faccio, Cots for the lhc radiation environment: The rules of the game, in: Proceedings of the 6 332 th Workshop on Electronics for the LHC Experiments (LEB2000), Krakow (Poland),2000, pp. 50–63. [18] P. Horowitz, W. Hill, The Art of Electronics, 2nd Edition, Cambridge University Press, United States of America, 1990, Ch. 13, pp. 900–902, iSBN:0-521-37095-7.
Collections