Publication:
Quantum stochastic resonance in parity violating chiral molecules

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In order to explore parity violating effects in chiral molecules, of interest in some models of evolution towards homochirality, quantum stochastic resonance (QSR) is studied for the population difference between the two enantiomers of a chiral molecule (hence for the optical activity of the sample), under low viscous friction and in the deep quantum regime. The molecule is described by a two-state model in an asymmetric double well potential where the asymmetry is given by the known predicted parity violating energy difference (PVED) between enantiomers. In the linear response to an external driving field that lowers and rises alternatively each one of the minima of the well, a signal of QSR is predicted only in the case that the PVED is different from zero, the resonance condition being independent on tunneling between the two enantiomers. It is shown that, at resonance, the fluctuations of the first order contribution to the internal energy are zero. Due to the small value of the PVED, the resonance would occur in the ultracold regime. Some proposals concerning the external driving field are suggested.
Description
This journal is © the Owner Societies 2011. This work has been funded by the MEC (Spain) under projects CTQ2008-02578/BQU, FIS2007-62006 and FIS2007-65382, and supported by the grant BES-2006-11976 (P. B.). P. B. dedicates this work to Anais Dorta-Urra for her continuous support.
Keywords
Citation
1 A. Guijarro and M. Yus, The Origin of Chirality in the Molecules of Life, RSC Publishing, Cambridge, 2009. 2 T. D. Lee and C. N. Yang, Phys. Rev., 1956, 104, 254. 3 C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudsonet, Phys. Rev., 1957, 105, 1413. 4 D. K. Kondepudi and G. W. Nelson, Nature, 1985, 314, 438. 5 S. Chandrasekhar, Chirality, 2008, 20, 84. 6 A. M. Bouchiat and C. C. Bouchiat, Rep. Prog. Phys., 1997, 60, 1351. 7 C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner and C. E. Wieman, Science, 1997, 275, 1759. 8 P. Soulard, P. Asselin, A. Cuisset, J. R. Aviles Moreno, T. R. Huet, D. Petitprez, J. Demaison, T. B. Freedman, X. Cao, L. A. Nafie and J. Crassous, Phys. Chem. Chem. Phys., 2006, 8, 79. 9 D. Figgen and P. Schwerdtfeger, Phys. Rev. A: At., Mol., Opt. Phys., 2008, 78, 012511. 10 M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem., 2008, 59, 741. 11 D. Figgen and P. Schwerdtfeger, J. Chem. Phys., 2009, 130, 054306. 12 J. Crassous, C. Chardonnet, T. Saue and P. Schwerdtfeger, Org. Biomol. Chem., 2005, 3, 2218. 13 W. Q. Wang, X. R. Shen, H. F. Jin, J. Wu, B. Yin, J. Li, Z. X. Zhao, H. S. Yang, F. M. Lou and Z. Z. Zhuang, J. Biol. Phys., 1996, 22, 65. 14 W. Q. Wang, W. Min, Z. Liang, L.-Y. Wang, L. Chen and F. Deng, Biophys. Chem., 2003, 103, 289. 15 A. Salam, J. Mol. Evol., 1991, 33, 105. 16 Y. Scolnik, I. Portnaya, U. Cogan, S. Tal, R. Haimovitz, M. Fridkin, A. C. Elitzur, D. W. Deamer and M. Shinitzky, Phys. Chem. Chem. Phys., 2006, 8, 333. 17 R. A. Harris and L. Stodolsky, Phys. Lett. B, 1978, 78, 313. 18 A. J. MacDermott and R. A. Hegstrom, Chem. Phys., 2004, 305, 55. 19 P. Bargueño, I. Gonzalo and R. Pérez de Tudela, Phys. Rev. A: At., Mol., Opt. Phys., 2009, 80, 012110. 20 I. Gonzalo, P. Bargueño, R. Pérez de Tudela and S. Miret-Artés, Chem. Phys. Lett., 2010, 489, 127. 21 J. M. Hudson and P. Soldan, Int. Rev. Phys. Chem., 2006, 25, 497. 22 J. M. Hudson and P. Soldan, Int. Rev. Phys. Chem., 2007, 26, 1. 23 P. Bargueño, I. Gonzalo, R. Pérez de Tudela and S. Miret-Artés, Chem. Phys. Lett., 2009, 483, 204. 24 P. Bargueño, R. Pérez de Tudela, S. Miret-Artés and I. Gonzalo, Phys. Chem. Chem. Phys., 2010, DOI: 10.1039/c0cp00907e. 25 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys., 1987, 59, 1. 26 U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore, 2nd edn, Series in Modern Condensed Matter Physics, 1999. 27 R. Silbey and R. A. Harris, J. Chem. Phys., 1984, 80, 2615. 28 R. A. Harris and R. Silbey, J. Chem. Phys., 1985, 83, 1069. 29 R. Silbey and R. A. Harris, J. Phys. Chem., 1989, 93, 7062. 30 L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Rev. Mod. Phys., 1998, 70, 223. 31 M. Grifoni and P. Hänggi, Phys. Rev. Lett., 1996, 76, 1611. 32 M. Grifoni and P. Hänggi, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1996, 54, 1390. 33 R. Kubo, J. Phys. Soc. Jpn., 1957, 12, 570. 34 J. Shao and P. Hänggi, J. Chem. Phys., 1997, 107, 9935. 35 L. D. Carr, D. DeMille, R. V. Krems and J. Ye, New J. Phys., 2009, 11, 055049.
Collections