Publication:
The galexis^(4)g uv-ir color-color diagram: catching spiral galaxies away from the blue sequence

Research Projects
Organizational Units
Journal Issue
Abstract
We obtained GALEX FUV, NUV, and Spitzer/ IRAC 3.6 μm photometry for > 2000 galaxies, available for 90% of the S^(4)G sample. We find a very tight. GALEX blue sequence (GBS) in the (FUV- NUV) versus (NUV-[3.6]) color- color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (tau) and a degeneracy between (tau) and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star- forming galaxies and objects that are just evolving to (or from) what we call the. GALEX green valley (GGV). At the red end of the GBS, at (NUV-[3.6]) > 5, we find a wider. GALEX red sequence (GRS) mostly populated by E/ S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by M_([3.6])) since both massive (M. > 10^(11)M.) blue- and red- sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0- Sa's, and most of these are located in high- density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 10^(8) yr.
Description
© 2015. The American Astronomical Society. All rights reserved. The NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. We acknowledge financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313. J.H.K. acknowledges financial support from the Spanish MINECO under grant number AYA2013-41243-P. A.G.d.P. and J.G. acknowledge financial support under grant number AYA2012-30717.
Unesco subjects
Keywords
Citation
Boissier, S., & Prantzos, N. 2000, MNRAS, 312, 398 Boselli, A., Boissier, S., Cortese, L., et al. 2006, ApJ, 651, 811 Boselli, A., Cortese, L., Deharveng, J. M., et al. 2005, ApJL, 629, L29 Bresolin, F. 2013, ApJL, 772, L23 Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582 Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2013, MNRAS, 432, 1862 Faber, S. M., Willmer, C. N. A., Wolf, C., et al. 2007, ApJ, 665, 265 Gavazzi, G., Boselli, A., Donati, A., Franzetti, P., & Scodeggio, M. 2003, A&A, 400, 451 Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, ApJS, 173, 185 Hernández Pérez, F., & Bruzual, G. 2014, MNRAS, 444, 2571 Kannappan, S. J., Guie, J. M., & Baker, A. J. 2009, AJ, 138, 579 Kawata, D., & Mulchaey, J. S. 2008, ApJL, 672, L103 Knapen, J. H., Erroz Ferrer, S., Roa, J., et al. 2014, A&A, 569, A91 Lagos, C. d. P., Davis, T. A., Lacey, C. G., et al. 2014, MNRAS, 443, 1002 Laine, J., Laurikainen, E., Salo, H., et al. 2014, MNRAS, 441, 1992 Laurikainen, E., Salo, H., Buta, R., et al. 2007, in IAU Symp. 235, Galaxy Evolution Across the Hubble Time, ed. F. Combes, & J. Palouš (Cambridge: Cambridge Univ. Press), 36 Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, ApJL, 619, L1 Meidt, S. E., Schinnerer, E., van de Ven, G., et al. 2014, ApJ, 788, 144 Muñoz Mateos, J. C., Boissier, S., Gil de Paz, A., et al. 2011, ApJ, 731, 10 Paturel, G., Petit, C., Prugniel, P., et al. 2003, A&A, 412, 45 Sheth, K., Regan, M., Hinz, J. L., Gil de Paz, A., & Menéndez Delmestre, K. 2010, PASP, 122, 1397 Stott, J. P., Pimbblet, K. A., Edge, A. C., Smith, G. P., & Wardlow, J. L. 2009, MNRAS, 394, 2098 Strateva, I., Ivezić, Ž., Knapp, G. R., et al. 2001, AJ, 122, 1861 Thilker, D. A., Bianchi, L., Schiminovich, D., et al. 2010, ApJL, 714, L171 Wyder, T. K., Martin, D. C., Schiminovich, D., et al. 2007, ApJS, 173, 293 Zaritsky, D., Gil de Paz, A., & Bouquin, A. Y. K. 2014, ApJL, 780, L1 Zaritsky, D., Gil de Paz, A., & Bouquin, A. Y. K. 2015, MNRAS, 446, 2030
Collections