Publication:
High-resolution imagery of earth at night: new sources, opportunities and challenges

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-01
Authors
Kyba, Christopher C. M.
Garz, Stefanie
Kuechly, Helga
Sánchez de Miguel, Alejandro
Fischer, Jüergen
Höelker, Franz
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Images of the Earth at night are an exceptional source of human geographical data, because artificial light highlights human activity in a way that daytime scenes do not. The quality of such imagery dramatically improved in 2012 with two new spaceborne detectors. The higher resolution and precision of the data considerably expands the scope of possible applications. In this paper, we introduce the two new data sources and discuss their potential limitations using three case studies. Data from the Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS DNB) is shown to have sufficient resolution to identify major sources of waste light, such as airports, and we find considerable variation in the peak radiance of the world's largest airports. Nighttime imagery brings "cultural footprints" to light: DNB data reveals that American cities emit many times more light per capita than German cities and that cities in the former East of Germany emit more light per capita than those in the former West. Photographs from the International Space Station, the second new source of imagery, provide some limited spectral information, as well as street-level resolution. These images may be of greater use for epidemiological studies than the lower resolution DNB data.
Description
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). This paper was conceived of and planned during activities of the EU COST Action ES1204 (Loss of the Night Network). The researchers were supported by grants from the German Federal Ministry of Education and Research (BMBF-033L038A), the Berlin Senate Department for Economics, Technology and Research (Lichtimmissionen im offentlichen Raum) and an FPU grant (FormaciÓn de Profesorado Universitario) from the Spanish Ministry of Science and Innovation (MCINN) to Alejandro Sánchez de Miguel. The support of AYA2012-31277 and AYA2013-46724-P and the Spanish Network for Light Pollution Studies (AYA2011-15808 E) is also acknowledged.
Keywords
Citation
1. Doll, C.N.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. 2. Elvidge, C.; Baugh, K.; Anderson, S.; Sutton, P.; Ghosh, T. The Lumen Gini Coefficient: A satellite imagery derived human development index. Soc. Geogr. Discuss 2012, 8, 27–59. 3. Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. 4. Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3, 148–161. 5. Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. 6. Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. 7. Lo, C. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. 8. Sutton, P.C.; Elvidge, C.; Obremski, T. Building and evaluating models to estimate ambient population density. Photogramm. Eng. Remote Sens. 2003, 69, 545–553. 9. Kuechly, H.U.; Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hölker, F. Aerial survey of light pollution in Berlin, Germany, and spatial analysis of sources. Remote Sens. Environ. 2012, 126, 39–50. 10. Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.; Sadler, J.P. Mapping lightscapes: Spatial patterning of artificial lighting in an urban landscape. PLoS One 2013, doi:10.1371/journal.pone.0061460. 11. Zhao, N.; Ghosh, T.; Samson, E.L. Mapping spatio-temporal changes of Chinese electric power consumption using night-time imagery. Int. J. Remote Sens. 2012, 33, 6304–6320. 12. Doll, C.H.; Muller, J.P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO 2000, 29, 157–162. 13. Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. 14. Stark, H.; Brown, S.; Wong, K.; Stutz, J.; Elvidge, C.; Pollack, I.; Ryerson, T.; Dube, W.; Wagner, N.; Parrish, D. City lights and urban air. Nat. Geosci. 2011, 4, 730–731. 15. Cinzano, P.; Falchi, F.; Elvidge, C.D. The first World Atlas of the artificial night sky brightness. Mon. Not. R. Astron. Soc. 2001, 328, 689–707. 16. Aubé, M.; Kocifaj, M. Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories. Mon. Not. R. Astron. Soc. 2012, 422, 819–830. 17. Kyba, C.C.M.; Wagner, J.M.; Kuechly, H.U.; Walker, C.E.; Elvidge, C.D.; Falchi, F.; Ruhtz, T.; Fischer, J.; Hölker, F. Citizen science provides valuable data for monitoring global night sky luminance. Sci. Rep. 2013, doi:10.1038/srep01835. 18. Kloog, I.; Haim, A.; Stevens, R.G.; Barchana, M.; Portnov, B.A. Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol. Int. 2008, 25, 65–81. 19. Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. 20. Miller, S.D.; Straka, W.; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Walther, A.; Heidinger, A.K.; Weiss, S.C. Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band. Remote Sens. 2013, 5, 6717–6766. 21. National Geophysical Data Center, National Oceanic and Atmospheric Administration. Two Months Composite, 2012. Available online: http://ngdc.noaa.gov/eog/viirs/download_ monthly.html (accessed on 8 August 2013). 22. De Miguel, S.A.; Castaño, J.G.; Zamorano, J.; Kyba, C.C.M.; Pascual, S.; Ángeles, M.; Cayuela, L.; Martin Martinez, G.; Challupner, P. Atlas of astronaut photos of Earth at night. Astron. Geophys. 2014, doi:10.1093/astrogeo/atu165. 23. De Miguel, S.A.; Zamorano Calvo, J.; Gómez Castaño, J. Image Classification of Night Time Images Detected from the International Space Station; Technical Report; Universidad Complutense de Madrid: Madrid, Spain, 2014. 24. Sabbatini, M. NightPod-Nodding Mechanism for the ISS; Technical Report Experiment Record #9337; European Space Agency: Noordwijk, The Netherlands, 2014. 25. Zamorano, J.; de Miguel, A.S.; Pascual, S.; Castaño, J.G.; Ramírez, P.; Challupner, P. ISS Nocturnal Images as a Scientific Tool against Light Pollution; LICA Report; LICA: Makati, Philippines, 2011. 26. De Miguel, S.A.; Zamorano, J.; Pascual, S.; López Cayuela, M.; Ocaña, F.; Challupner, P.; Gómez Castaño, J.; Fernández Renau, A.; Gómez, J.; de Miguel, E. ISS nocturnal images as a scientic tool against light pollution: Flux calibration and colors. In Highlights of Spanish Astrophysics VII; Springer: Berlin, Germany, 2013; Volume 1, pp. 916–919. 27. Central Intelligence Agency. The World Factbook, 2013. Available online: http://www.cia.gov/ library/publications/the-world-factbook/fields/2219.html (accessed on 30 June 2014). 28. De Miguel, S.A. Variación del Brillo del Fondo de Cielo en el Cénit con la Fase y Altura de la Luna. Master’s Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2012. 29. Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. Spectral identification of lighting type and character. Sensors 2010, 10, 3961–3988. 30. Graf, N.; Grube, D.; Henckel, D.; Kniesburges, A.; Kostulski, B.; Ossa, M.M.; Naeth, A.; Oberpichler, A.; Ottrembka, F.; Reiling, J.; et al. LichtGestalten: Analyse-, Gestaltungs-, und Konfliktpotenziale; Technische Universität Berlin: Berlin, Germany, 2013. 31. Berlin Senatsverwaltung für Stadtentwicklung und Umwelt. Gaslaternen in Berlin, 2014. Available online: http://www.stadtentwicklung.berlin.de/bauen/beleuchtung/de/gaslicht (accessed on 26 August 2014). 32. Berlin Senate Department for Urban Development and the Environment. Stadtbild Berlin Lichtkonzept Handbuch, 2011. Available online: http://www.stadtentwicklung.berlin.de/bauen/beleuchtung/download/Broschuere_Lichtkonzept.pdf (accessed on 18 December 2014). 33. Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S. A new source for high spatial resolution night time images—The EROS-B commercial satellite. Remote Sens. Environ. 2014, 149, 1–12. 34. Bertiau, F.C.; de Graeve, E.; Treanor, P.J. The artificial night-sky illumination in Italy. Vatican Obs. Publ. 1973, 1, 157–179. 35. Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. 36. Luginbuhl, C.B. Using DMSP night-time imagery to evaluate lighting practice in the American southwest. Preserv. Astron. Sky 2001, 196, 103–106. 37. Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. 38. Bundesamt für Kartographie und Geodäsie. Administrative Areas 1:250,000, 2012. Available online: http://tinyurl.com/kplccqm (accessed on 30 June 2013). 39. Miller, S.; Mills, S.; Elvidge, C.; Lindsey, D.; Lee, T.; Hawkins, J. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2012, 109, 15706–15711. 40. Pepler, W.; Schiller, C.; Khan, T.Q. Kommunen in Neuem Licht; Siebel Druck und Grafik: Lindlar, Germany, 2013. 41. Glorius, B. Go west: Internal migration in Germany after reunification. Belg. Rev. Belg. Géogr. 2010, 3, 281–292. 42. Garz, S. Erste Untersuchung der Nachtaufnahmen von Städten des neuen Satelliten Suomi NPP. Bachelor’s Thesis, Freie Universitaet Berlin, Berlin, Germany, 2014. 43. Mesa, D. 2012 Airport Traffic Report; Technical Report; The Port Authority of NY & NJ: New York, NY, USA, 2013. 44. Kyba, C.; Hänel, A.; Hölker, F. Redefining efficiency for outdoor lighting. Energ. Environ. Sci. 2014, 7, 1806–1809. 45. Zollweg, J.D.; Gartley, M.; Roskovensky, J.; Mercier, J. Using GIS databases for simulated nightlight imagery. Proc. SPIE 2012, doi:10.1117/12.919510. 46. Olsen, R.N.; Gallaway, T.; Mitchell, D. Modelling US light pollution. J. Environ. Plann. Manag. 2014, 57, 883–903. 47. Kantermann, T.; Roenneberg, T. Is light at night a health risk factor or a health risk predictor? Chronobiol. Int. 2009, 26, 1069–1074. 48. Falchi, F.; Cinzano, P.; Elvidge, C.; Keith, D.; Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 2011, 92, 2714–2722. 49. Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. 50. Cinzano, P.; Falchi, F. The propagation of light pollution in the atmosphere. Mon. Not. R. Astron. Soc. 2012, 427, 3337–3357. 51. Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. Red is the new black: How the color of urban skyglow varies with cloud cover. Mon. Not. R. Astron. Soc. 2012, 425, 701–708. 52. Luginbuhl, C.B.; Duriscoe, D.M.; Moore, C.W.; Richman, A.; Lockwood, G.W.; Davis, D.R. From the ground up II: Sky glow and near-ground artificial light propagation in Flagstaff, Arizona. Publ. Astron. Soc. Pac. 2009, 121, 204–212. 53. Kyba, C.; Ruhtz, T.; Lindemann, C.; Fischer, J.; Hölker, F. Two camera system for measurement of urban uplight angular distribution. In Proceedings of the International Radiation Symposium (IRC/IAMAS) Radiation Processes in the Atmosphere and Ocean (IRS2012), Berlin, Germany, 6–10 August 2012; AIP Publishing: Melville, NY, USA, 2013; Volume 1531, pp. 568–571. 54. Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington, DC, USA, 2006. 55. Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. 56. Organisation for Economic Co-operation and Development (OECD)/International Energy Agency (IEA). Light’s Labour’s Lost: Policies for Energy-Efficient Lighting; OECD/IEA: Paris, France, 2006. 57. Tsao, J.Y.; Saunders, H.D.; Creighton, J.R.; Coltrin, M.E.; Simmons, J.A. Solid-state lighting: An energy-economics perspective. J. Phys. D Appl. Phys. 2010, doi:10.1088/ 0022-3727/43/35/354001. 58. Riegel, K. Light pollution. Science 1973, 179, 1285–1291 59. Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.; Henckel, A.; Hänel, A.; Kappeler, P.; Völker, S.; Schwope, A.; et al. The dark side of light—A transdisciplinary research agenda for light pollution policy. Ecol. Soc. 2010, 15, 13. 60. De Miguel, S.A.; Zamorano, J.; Gómez Castaño, J.; Pascual, S. Evolution of the energy consumed by street lighting in Spain estimated with DMSP-OLS data. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 109–117. 61. Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J. Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci. Rep. 2014, doi:10.1038/srep03789. 62. Han, P.; Huang, J.; Li, R.; Wang, L.; Hu, Y.; Wang, J.; Huang, W. Monitoring trends in light pollution in China based on nighttime satellite imagery. Remote Sens. 2014, 6, 5541–5558.
Collections