Publication:
Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Climate field reconstructions (CFRs) of the global annual surface air temperature (SAT) field and associated global area-weighted mean annual temperature (GMAT) are derived in a collection of pseudoproxy experiments for the past millennium. Pseudoproxies are modeled from temperature (T), precipitation (P), T + P, and VS-Lite (VSL), a nonlinear and multivariate proxy system model for tree ring widths. Spatial patterns of reconstruction skill and spectral bias for the T + P and VSL-derived CFRs are similar to those previously shown using temperature-only pseudoproxies but demonstrate overall degraded skill and spectral bias for SAT reconstruction. Analysis of GMAT spectra nevertheless suggests that the true GMAT frequency spectrum is resolved by those pseudoproxies (T, T + P, and VSL) that contain some temperature information. The results suggest that mixed temperature and moisture-responding paleoclimate data may produce actual GMAT reconstructions with skill, error, and spectral characteristics like those expected from univariate and linear temperature responders, but spatially resolved CFR results should be analyzed cautiously
Description
© 2014 American Geophysical Union. We are grateful to two anonymous reviewers whose comments helped improve this paper. Work was supported by grants NSF/ATM0902715 to M.N.E. and NSF/ATM0902436 to J.E.S. and A.K.; M.N.E. and J.E.S. also acknowledge support from NOAA grant NA10OAR431037. The pseudoproxies used in this study will be made available for further testing across different methodological applications at http://one.geol.umd.edu/ www/data/ and the NOAA/National Climatic Data Center (http://www. ncdc.noaa.gov). Code for both VS-Lite and its environmental parameter estimation is available for download from the NOAA/National Climatic Data Center (ftp://ftp.ncdc.noaa.gov/ pub/data/paleo/softlib/vs-lite/). LDEO contribution 7844. The Editor thanks Scott St. George and an anonymous reviewer for their assistance in evaluating this paper.
Unesco subjects
Keywords
Citation
Anchukaitis, K. J., and J. E. Tierney (2012), Identifying coherent spatiotemporal modes in time uncertain proxy paleoclimate records, Clim. Dyn., 1423–1441, doi:10.1007/s00382-012-1483-0. Anchukaitis, K. J., M. N. Evans, A. Kaplan, E. A. Vaganov, H. D. Grissino-Mayer, M. K. Hughes, and M. A. Cane (2006), Forward modeling of regional-scale tree-ring patterns in the southeastern United States and the recent influence of summer drought, Geophys. Res. Lett., 33, L04705, doi:10.1029/2005GL025050. Anchukaitis, K. J., et al. (2012), Tree rings and volcanic cooling, Nat. Geosci., 5, 836–837, doi:10.1038/ngeo1645. Babst, F., et al. (2013), Site- and species-specific responses of forest growth to climate across the European continent, Global Ecol.Biogeography, 22, 706–717, doi:10.1111/geb.12023. Breitenmoser, P., S. Brönnimann, and S. Frank (2014), Forward modeling of tree-ring width and comparison with a global network of tree-ring chronologies, Clim. Past, 10, 437–449, doi:10.5194/cp-10-437-2014. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones (2006), Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548. Christiansen, B. (2011), Reconstructing the NH mean temperature: Can underestimation of trends and variability be avoided?, J. Clim., 24, 674–692. Comboul, M., J. Emile-Geay, M. N. Evans, N. Mirnateghi, K. M. Cobb, and D. M. Thompson (2014), A probabilistic model of chronological errors in layer-counted climate proxies: Applications to annually-banded coral archives, Clim. Past, 10, 825–841, doi:10.5194/cp-10-825-2014. Cook, E. R., and L. Kairiukstis (Eds.) (1990), Methods of Dendrochronology: Applications in the Environmental Sciences, 394 pp., Kluwer, Boston, Mass. Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland (1999), Drought reconstructions for the continental United States, J. Clim., 12, 1145–1162. Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. Stahle (2004), Long-term aridity changes in the western United States, Science, 306(5698), 1015–1018. Emile-Geay, J., K. M. Cobb, M. E. Mann, and A. T. Wittenberg (2013), Estimating central equatorial Pacific SST variability over the past millennium. Part I: Methodology and validation, J. Clim., 26, 2302–2328, doi:10.1175/JCLI-D-11-00510.1. Evans, M. N., A. Kaplan, and M. A. Cane (1998), Optimal sites for coral-based reconstruction of sea surface temperature, Paleoceanography, 13, 502–516. Evans, M. N., A. Kaplan, M. A. Cane, and R. Villalba (2001), Globality and optimality in climate field reconstructions from proxy data, in Interhemispheric Climate Linkages, edited by V. Markgraf, pp. 53–72, Cambridge Univ. Press, Cambridge, U. K. Evans, M. N., A. Kaplan, and M. A. Cane (2002), Pacific sea surface temperature field reconstruction from coral
Collections