Publication:
Silica removal in industrial effluents with high silica content and low hardness

Research Projects
Organizational Units
Journal Issue
Abstract
High silica content of paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content which makes necessary the addition of magnesium compounds to increase silica removal. Two soluble magnesium compounds (MgCl2∙6H2O and MgSO4∙7H2O) were tested at five dosages (250-1500 mg/L) and different initial pHs. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 mS/cm to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)2 instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15% vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.
Description
Keywords
Citation
Collections