Publication:
Control of waveguide properties by tuning femtosecond laser induced compositional changes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014
Authors
Hoyo Muñoz, Jesús del
Martínez Vázquez, Rebeca
Teddy Fernández, Toney
Siegel, Jan
Osellame, Roberto
Solís Céspedes, Francisco Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Local compositional changes induced by high repetition rate fs-laser irradiation can be used to produce high performance optical waveguides in phosphate-based glasses. The waveguide refractive index contrast is determined by the local concentration of La, which can be changed by the action of the writing laser pulses. In this work, we have investigated the degree of control that can be exerted using this waveguide writing mechanism over the cross-section of the guiding region, and the local refractive index and compositional changes induced. These variables can be smoothly controlled via processing parameters using the slit shaping technique with moderate Numerical Aperture (NA 0.68) writing optics. The combined use of X-ray microanalysis and near field refractive index profilometry evidences a neat linear correlation between local La content and refractive index increase over a broad Δn interval (>3 x 10^2). This result further confirms the feasibility of generating efficient, integrated optics elements via spatially selective modification of the glass composition.
Description
© 2014 AIP Publishing LLC. This work was partially supported by the Spanish Ministry Economy and Competitiveness (MINECO, TEC2011-22422, MAT2012-31959), J.H. and T.T.F. acknowledge funding from the JAE CSIC Program (pre- and post-doctoral fellowships, respectively, co-funded by the European Social Fund). B. Sotillo acknowledges her funding in the frame of CSD2009-00013 (MINECO).
Unesco subjects
Keywords
Citation
1 K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996). 2 R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, IEEE J. Sel. Top. Quantum Electron. 12, 277 (2006). 3 J. Burghoff, C. Grebing, S. Nolte, and A. T€unnermann, Appl. Phys. Lett. 89, 081108 (2006). 4 J. Siegel, J. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, Appl. Phys. Lett. 86, 121109 (2005). 5 J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001). 6 A. Ferrer, D. Jaque, J. Siegel, A. R. De la Cruz, and J. Solis, J. Appl. Phys. 109, 093107 (2011). 7 K. Hirao and K. Miura, J. Non. Cryst. Solids 239, 91 (1998). 8 O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, Opt. Mater. 17, 379 (2001). 9 D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, J. Appl. Phys. 108, 033110 (2010). 10 R. Martínez-Vázquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, Opt. Express 15, 12628–12635 (2007). 11 S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, J. Non. Cryst. Solids 357, 2387 (2011). 12 Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Lett. 34, 136, (2009). 13 Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, J. Non. Cryst. Solids 351, 885 (2005). 14 M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011). 15 M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, Opt. Lett. 38, 4939 (2013). 16 F. Luo, J. Song, X. Hu, H. Sun, G. Lin, H. Pan, Y. Cheng, L. Liu, J. Qiu Q. Zhao, and Z. Xu, Opt. Lett. 36, 2125 (2011). 17 P. Mardilovich, L. B. Fletcher, N. W. Troy, L. Yang, H. Huang, S. H. Risbud, and D. M. Krol, Int. J. Appl. Glas. Sci. 4, 87 (2013). 18 J. Hoyo, V. Berdejo, T. T. Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, and J. Solis, Laser Phys. Lett. 10, 105802 (2013). 19 T. T. Fernández, P. Haro-González, B. Sotillo, M. Hernández, D. Jaque, P. Fernández, C. Domingo, J. Siegel, and J. Solís, Opt. Lett. 38, 5248 (2013). 20 T. T. Fernández, M. Hernández, B. Sotillo, S. M. Eaton, G. Jose, R. Osellame, A. Jha, P. Fernández, and J. Solís, Opt. Express 22, 15298 (2014). 21 R. K. Brow, E. Metwalli, and D. L. Sidebottom, Proc. SPIE 4102, 88–94 (2000). 22 S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, Opt. Express 16, 9443 (2008). 23 A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, Opt. Express 21, 2978 (2013). 24 The experimental refractive index map used for the estimation had a maximum Dn¼1.5_10_2 at 670 nm, similar to the one estimated from waveguide NA measurements at 1620 nm.19 The dispersion of the glass seems thus little affected by the compositional change. 25 A. Tervonen, B. R. West, and H. Seppo, Opt. Eng. 50, 071107 (2011). 26 M. Sun, U. Eppelt, W. Schulz, and J. Zhu, Opt. Mater. Express 3, 1716 (2013).
Collections