Publication:
MAGIC search for vhe γ-ray emission from ae aquarii in a multiwavelength context

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EDP Sciencies
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Context. It has been claimed that the nova-like cataclysmic variable (CV) AE Aquarii (AE Aqr) is a very-high-energy (VHE, E >100 GeV) source both on observational and theoretical grounds. Aims. We search for VHE γ-ray emission from AE Aqr during different states of the source at several wavelengths to confirm or rule out previous claims of detection of γ-ray emission from this object. Methods. We report on observations of AE Aqr performed by MAGIC. The source was observed during 12 hours as part of a multiwavelength campaign carried out between May and June 2012 covering the optical, X-ray, and γ-ray ranges. Besides MAGIC, the other facilities involved were the KVA, Skinakas, and Vidojevica telescopes in the optical and Swift in X-rays. We calculated integral upper limits coincident with different states of the source in the optical. We computed upper limits to the pulsed emission limiting the signal region to 30% of the phaseogram and we also searched for pulsed emission at different frequencies applying the Rayleigh test Results. AE Aqr was not detected at VHE energies during the multiwavelength campaign. We establish integral upper limits at the 95% confidence level for the steady emission assuming the differential flux proportional to a power-law function dφ/dE ∝ E^(−Γ) , with a Crab-like photon spectral index of Γ=2.6. The upper limit above 200 GeV is 6.4×10^(−12) cm^(−2) s ^(−1) and above 1 TeV is 7.4×10^(−13) cm^(−2) s^( −1) . We obtained an upper limit for the pulsed emission of 2.6×10^(−12) cm^(−2) s^(−1) for energies above 200 GeV. Applying the Rayleigh test for pulsed emission at different frequencies we did not find any significant signal. Conclusions. Our results indicate that AE Aqr is not a VHE γ-ray emitter at the level of emission previously claimed. We have established the most constraining upper limits for the VHE γ-ray emission of AE Aqr.
Description
© EDP Sciences. We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MINECO is gratefully acknowledged. This work was also supported by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 program, by grant 127740 of the Academy of Finland, by the DFG Cluster of Excellence “Origin and Structure of the Universe”, by the Croatian Science Foundation (HrZZ) Project 9/176, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESSMAGIC/2010/0. CWM’s contribution to this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. MB acknowledges support from the Serbian MESTD through grant ON176021. The authors thank N. Gehrels for approving our request for target-of-opportunity observations and the Swift Science Operations Team for scheduling them. This research made use of data provided by the HEASARC, which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. This research made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. We would also like to thank the American Association of Variable Star Observers for supporting optical observations during the campaign.
UCM subjects
Keywords
Citation
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, Science, 329, 817 Albert, J., Aliu, E., Anderhub, H., et al. 2008, Nuclear Instruments and Methods in Physics Research A, 588, 424 Aleksic, J., Alvarez, E. A., Antonelli, L. A., et al. 2012, Astroparticle Physics, 35, 435 Bastian, T. S., Dulk, G. A., & Chanmugam, G. 1988, ApJ, 324, 431 Bernlöhr, K., Barnacka, A., Becherini, Y., et al. 2013, Proceedings of the 33rd ICRC, (arXiv:1307.2773) Bowden, C. C. G., Bradbury, S. M., Chadwick, P. M., et al. 1992, Astroparticle Physics, 1, 47 Brazier, S. K. T., Carraminana, A., Chadwick, M. P., et al. 1990, International Cosmic Ray Conference, 4, 270 Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, Space Sci. Rev., 120, 165 Chadwick, P. M., Dickinson, J. E., Dickinson, M. R., et al. 1995, Astroparticle Physics, 4, 99 Chanmugam, G. & Brecher, K. 1985, Nature, 313, 767 Cheung, C. C. 2013, Fermi Symposium proceedings (arXiv:1304.3475) Cheung, C. C., Jean, P., & Shore, S. N. 2013, The Astronomer´s Telegram, 5653, 1 CTA Consortium. 2013, Astroparticle Physics, 43, 3 de Jager, H. I., de Jager, O. C., North, A. R., et al. 1986, South African Journal of Physics, 9, 107 de Jager, O. C. 1994, ApJ, 436, 239 de Jager, O. C., Meintjes, P. J., O’Donoghue, D., & Robinson, E. L. 1994, MNRAS, 267, 577 de Jager, O. C., Raubenheimer, B. C., & Swanepoel, J. W. H. 1989, A&A, 221, 180 Fomin, V. P., Stepanian, A. A., Lamb, R. C., et al. 1994, Astroparticle Physics, 2, 137 Friedjung, M. 1997, New A, 2, 319 Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005 Hays, E., Cheung, T., & Ciprini, S. 2013, The Astronomer’s Telegram, 5302 Hobbs, G. B., Edwards, R. T., & Manchester, R. N. 2006, MNRAS, 369, 655 Ikhsanov, N. R. 1998, A&A, 338, 521 Ikhsanov, N. R. & Biermann, P. L. 2006, A&A, 445, 305 Kitaguchi, T., An, H., Beloborodov, A. M., et al. 2014, ApJ, 782, 3 Kuijpers, J., Fletcher, L., Abada-Simon, M., et al. 1997, A&A, 322, 242 Lang, M. J., Buckley, J. H., Carter-Lewis, D. A., et al. 1998, Astroparticle Physics, 9, 203 Mardia, K. V. 1972, Statistics of Directional Data. Academic Press, New York. Mauche, C. W. 2006, MNRAS, 369, 1983 Mauche, C. W. 2009, ApJ, 706, 130 Mauche, C. W., Abada-Simon, M., Desmurs, J.-F., et al. 2012, Mem. Soc. Astron. Italiana, 83, 651 Meintjes, P. J. & de Jager, O. C. 2000, MNRAS, 311, 611 Meintjes, P. J., de Jager, O. C., Raubenheimer, B. C., et al. 1994, ApJ, 434, 292 Meintjes, P. J., Oruru, B., & Odendaal, A. 2012, Mem. Soc. Astron. Italiana, 83, 643 Nilsson, K. 2014, in preparation Patterson, J. 1979, ApJ, 234, 978 Patterson, J. 1994, PASP, 106, 209 Patterson, J., Branch, D., Chincarini, G., & Robinson, E. L. 1980, ApJ, 240, L133 Rolke, W. A., López, A. M., & Conrad, J. 2005, Nuclear Instruments and Methods in Physic Research A, 551, 493 Sidro, N., Cortina, J., Mauche, C. W., & et al. 2008, in International Cosmic Ray Conference, Vol. 2, International Cosmic Ray Conference, 715–718 Takalo, L. O., Nilsson, K., Lindfors, E., et al. 2008, in American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, Vol. 1085, 705–707 Terada, Y. 2013, Thirteenth Marcel Grossmann Meeting (arXiv:1306.4053) Terada, Y., Hayashi, T., Ishida, M., et al. 2008, PASJ, 60, 387 Warner, B. 2003, Cataclysmic Variable Stars (Cambridge University Press) Welsh, W. F., Horne, K., & Gomer, R. 1998, MNRAS, 298, 285 Wynn, G. A., King, A. R., & Horne, K. 1997, MNRAS, 286, 436 Zanin, R., Carmona, E., Sitarek, J., et al. 2013, Proceedings of the ICRC 2013, id 773
Collections