Publication:
Candy wrapper for the Earth's inner core

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-06-28
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature publishing group
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Recent global expansion of seismic data motivated a number of seismological studies of the Earth’s inner core that proposed the existence of increasingly complex structure and anisotropy. In the meantime, new hypotheses of dynamic mechanisms have been put forward to interpret seismological results. Here, the nature of hemispherical dichotomy and anisotropy is re-investigated by bridging the observations of PKP(bc-df) differential travel-times with the iron bcc/hcp elastic properties computed from first-principles methods.The Candy Wrapper velocity model introduced here accounts for a dynamic picture of the inner core (i.e., the eastward drift of material), where different iron crystal shapes can be stabilized at the two hemispheres. We show that seismological data are best explained by a rather complicated, mosaic-like, structure of the inner core, where well-separated patches of different iron crystals compose the anisotropic western hemispherical region, and a conglomerate of almost indistinguishable iron phases builds-up the weakly anisotropic eastern side.
Description
© The authors. The work of M.M., E.B. and A.U. is partially supported by the Spanish Ministry of Science and Innovation (CGL 2010-19803-C03-01). R.A. (VR project 2012-4379) and A.B.B. (VR project 2010-3187) acknowledge financial support from the Swedish Research Council.
Unesco subjects
Keywords
Citation
1. Souriau, A. The Earth’s cores. In: Schubert, G. (Ed.), Treatise on Geophysics, vol.1 (2007). 2. Tkalčić, H. & Kennett, B. L. N. Core structure and heterogeneity: a seismological prospective. Aust. J. Earth. Sci. 55, 419–431 (2008). 3. Deguen, R. Structure and dynamics of Earth’s inner core. Earth Planet. Sci. Lett. 333, 211–225 (2012). 4. Labrosse, S., Poirier, P. & Le Mouël, J. L. The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001). 5. Tromp, J. Inner-core anisotropy and rotation. Annu. Rev. Earth Planet. Sci. 29, 47–69 (2001). 6. Stixrude, L. & Cohen, R. E. High-pressure elasticity of iron and anisotropy of Earth’s inner core. Science 267, 1972–1975 (1995). 7. Wookey, J. & Helffrich, G. Inner-core shear-wave anisotropy and texture from an observation of PKJKP waves. Nature 454, 873–877 (2008). 8. Belonoshko, A. B., Ahuja, R. & Johansson, B. Stability of the body-centred-cubic phase of iron in the Earth’sinner core. Nature 424, 1032–1034 (2003). 9. Belonoshko, A. B., Skorodumova, N. V., Rosengren, A. & Johansson, B. Elastic anisotropy of Earth’s inner core. Science 319, 797–800 (2008). 10. Mattesini, M., Belonoshko, A. B., Buforn, E., Ramírez, M., Simak, S. I., Udías, A., Mao, H. K. & Ahuja, R. Hemispherical anisotropic patterns of the Earth’s inner core. Proc. Natl. Acad. Sci. USA 107, 9507–9512 (2010). 11. Woodhouse, J. H., Giardini, D. & Li, X.-D. Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett. 13, 1549–1552 (1986). 12. Morelli, A., Dziewonski, A. M. & Woodhouse, J. H. Anisotropy of the inner core inferred from PKIKP travel-times. Geophys. Res. Lett. 13, 1545–1548 (1986). 13. Leykam, D., Tkalčić, H. & Reading, A. M. Core structure reexamined using new teleseismic data recorded in Antarctica: Evidence for, at most, weak cylindrical seismic anisotropy in the inner core. Geophys. J. Int. 180, 1329–1343 (2010). 14. Tkalčić, H. Large variations in travel times of mantle-sensitive seismic wavesfrom the South Sandwich Islands: Is the Earth’s inner core a conglomerate of anisotropic domains? Geophys. Res. Lett. 37, L14312–L14318 (2010). 15. Tanaka, S. & Hamaguchi, S. Degree one heterogeneity and hemispherical variations of anisotropy in the inner core from PKP(BC)-PKP(DF) times. J. Geophys. Res. Lett. 102, 2925–2938 (1997). 16. Niu, F. & Wen, L. Hemispherical variations in seismic velocity at the top of the Earth’s inner core. Nature 410, 1081–1084 (2001). 17. Deuss, A., Irving, J. C. E. & Woodhouse, J. H. Regional Variation of Inner Core Anisotropy from Seismic Normal Mode Observations. Science 328, 1018–1020 (2010). 18. Souriau, A. & Romanowicz, B. Anisotropy in the inner core: relation between Pvelocity and attenuation. Phys. Earth Planet. Inter. 101, 33–47 (1997). 19. Cao, A. & Romanowicz, B. Hemispherical transition of seismic attenuation at the top of the Earth’s inner core. Earth Planet. Sc. Lett. 228, 243–253 (2004). 20. Alboussiére, T., Deguen, R. & Melzani, M. Melting induced stratification above Earth’s inner coredue to convective translation. Nature 466, 744–747 (2010). 21. Monnereau, M., Calvet, M., Margerin, L. & Souriau, A. Lopsided growth of Earth’s inner core. Science 328, 1014–1017 (2010). 22. Leyton, F. & Koper, K. D. Using PKiKP coda to determine inner core structure: 1. Synthesis of coda envelopes using single-scattering theories. J. Geophys. Res. 112, B05316–B05335 (2007). 23. Calvet, M. & Margerin, L. Constraints on grain size and stable iron phases in the uppermost inner core from multiple scattering modeling of seismic velocity and attenuation. Earth Planet. Sci. Lett. 267, 200–212 (2008). 24. Tkalčić, H., Romanowicz, B. & Houy, N. Constraints on D0 structure using PKP(AB–DF), PKP(BC–DF) and PcP–P travel time data from broad-band records. Geophys. J. Int. 149, 599–616 (2002). 25. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on the velocity structure in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995). 26. Romanowicz, B., Tkalčić, H. & Breger, L. On the origin of complexity in PKP travel time data from broadband records. AGU volume on inner core and lower mantle, AGU Geodynamics Series, V. Dehant, K. Creager, S. Karato, S. Zatman, Editors (2003). 27. Creager, K. C. Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature 356, 309–314 (1992). 28. Stroujkova, A. & Cormier, V. F. Regional variations in the uppermost 100 km of the Earth’s inner core. J. Geophys. Res. 109, B10307–B10315 (2004). 29. Belonoshko, A. B., Arapan, S. & Rosengren, A. An ab initio molecular dynamics study of iron phases at high pressure and temperature. J. Phys.: Cond. Mat. 23, 485402–485410 (2011). 30. Hemley, R. & Mao H. In-situ studies of iron under pressure: new windows on the Earth’s core. Int. Geol. Rev. 43, 1–30 (2001). 31. Dubrovinsky, L., Dubrovinskaia, N., Narygina, O., Kantor, I., Kuznetzov, A., Prakapenka, V. B., Vitos, L., Johansson, B., Mikhaylushkin, A. S., Simak, S. I. & Abrikosov, I. A. Body-centered cubic iron-nickel alloy in Earth’s core. Science 316, 1880–1883 (2007). 32. Vočadlo, L., Dobson, D. P. & Wood, I. G. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet. Sci. Lett. 288, 534–538 (2009). 33. Vočadlo, L. Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: Evidence for a partially molten inner core? Earth Planet. Sci. Lett. 254, 227–232 (2007). 34. Bergman, M. I. Measurements of elastic anisotropy due to solidification texturing and the implications for the earth’s inner core. Nature 389, 60–63 (1997). 35. Bergman, M. I., Lewis, D., Myint, I., Slivka, L., Karato, S. & Abreu, A. Grain growth and loss of texture during annealing of alloys, and the translation of Earth’s inner core. Geophys. Res. Lett. 37, L22313–L22319 (2010). 36. Brito, D., Elbert, D. & Olson, P. Experimental crystallization of gallium: ultrasonic measurements of elastic anisotropy and implications for the inner core. Phys. Earth Planet. Inter. 129, 325–346 (2002). 37. Chalmers, B. Principles of solidifications. J. Wiley & Sons, New York, 339 pp (1964). 38. Loper, D. & Roberts, P. A study of conditions at the inner core boundary of the Earth. Phys. Earth Planet. Inter. 24, 302–307 (1981). 39. Fearn, D., Loper, D. & Roberts, P. Structure of the Earth’s inner core. Nature 292, 232–233 (1981). 40. Belonoshko, A. B., Skorodumova, N. V., Davis, N., Osiptsov, S., Rosengren, A. & Johansson, B. Origin of the low rigidity of the Earth’s inner core. Science 316, 1603–1605 (2007). 41. Geballe Z. M., Lasbleis M., Cormier V. F. & Day E. A. Sharp hemisphere boundaries in a translating inner core. Geophys. Res. Lett. doi:10.1002/grl.50372 (2013). 42. Koći, L., Belonoshko, A. B. & Ahuja, R. Molecular dynamics calculation of liquid iron propertiesand adiabatic temperature gradient in the Earth’s outer core. Geoph. J. Int. 168, 890–894 (2007). 43. Allègre, C. J., Poirier, J.-P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995). 44. Mattesini, M., Buforn, E., Udías, A., Vitos, L. & Ahuja, R. An ab initio study of Ssubstituted iron-nickel-silicon alloy at the Earth’s inner core pressure. High Pressure Res. 28, 437–441 (2008). 45. Ruban, A. V., Belonoshko, A. B. & Skorodumova, N. V. Impact of magnetism on Fe under Earth’s core conditions. Phys. Rev. B 87, 014405–014411 (2013). 46. Karato, S.-I. Inner core anisotropy due to magnetic field-induced preferred orientation of iron. Science 262, 1708–1711 (1993). 47. Gubbins, D., Sreenivasan, B., Mound, J. & Rost, S. Melting of the Earth’s inner core. Nature 473, 361–363 (2011). 48. Aubert, J., Amit, H. & Hulot, G. Detecting thermal boundary control in surface flows from numerical dynamos. Phys. Earth Planet. Inter. 160, 143–156 (2007). 49. Auld, B. A. Acoustic Fields and Waves in Solids, Vols. I and II J. Wiley & Sons. Interscience, New York (1973). 50. Hill, R. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London 65, 349–355 (1952).
Collections