Publication:
The fate of non-trivial entanglement under a gravitational collapse

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-11-21
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We analyse the evolution of the entanglement of a non-trivial initial quantum field state (which, for simplicity, has been taken to be a bipartite state made out of vacuum and the first excited state) when it undergoes a gravitational collapse. We carry out this analysis by generalizing the tools developed to study entanglement behaviour in stationary scenarios and making them suitable to deal with dynamical spacetimes. We also discuss what kind of problems can be tackled using the formalism spelled out here, as well as single out future avenues of research.
Description
© IOP Publishing Ltd. We would like to thank Robert B Mann and Tim Ralph for their kind invitation to contribute to the Focus issue of Classical and Quantum Gravity on Relativistic Quantum Information. This work was supported by the Spanish MICINN/MINECO Projects FIS2011-29287, FIS2008-06078-C03-03, FIS2011-30145-C03-02, the CAM research consortium QUITEMAD S2009/ESP-1594 and the Consolider-Ingenio 2010 Program CPAN (CSD2007-00042).
Unesco subjects
Keywords
Citation
[1] P. M. Alsing and G. J. Milburn, “Teleportation with a uniformly accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003). [2] I. Fuentes-Schuller and R. B. Mann, “Alice falls into a black hole: Entanglement in non-inertial frames,” Phys. Rev. Lett. 95, 120404 (2005). [3] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006). [4] J. León and E. Martín-Martínez, “Spin and occupation number entanglement of Dirac fields for noninertial observers,” Phys. Rev. A 80, 012314 (2009). [5] E. Martín-Martínez and J. León, “Fermionic entanglement that survives a black hole,” Phys. Rev. A 80, 042318 (2009). [6] E. Martín-Martínez and J. León, “Quantum correlations through event horizons: Fermionic versus bosonic entanglement,” Phys. Rev. A 81, 032320 (2010). [7] D. E. Bruschi, J. Louko, E. Martín Martínez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332 (2010). [8] E. M.-M. N. Friis, P. Köhler and R. A. Bertlmann., “Residual entanglement of accelerated fermions is not nonlocal,” Phys. Rev. A 84, 062111 ((2011)). [9] D. E. Bruschi, I. Fuentes, and J. Louko, “Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion,” Phys. Rev. D 85, 061701 (2012). [10] N. Friis, D. E. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012). [11] E. Martín-Martínez, L. J. Garay, and J. León, “Unveiling quantum entanglement degradation near a Schwarzschild black hole,” Phys. Rev. D 82, 064006 (2010). [12] J. L. Ball, I. Fuentes-Schuller, and F. P. Schuller, “Entanglement in an expanding spacetime,” Phys. Lett. A 359, 550 (2006). [13] E. Martín-Martínez, L. J. Garay, and J. León, “Quantum entanglement produced in the formation of a black hole,” Phys. Rev. D 82, 064028 (2010). [14] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I. Carusotto, “Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes,” Phys. Rev. A 78, 021603 (2008). [15] A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation (World Scientific, London (United Kingdom), 2005). [16] R. Sch¨utzhold and W. G. Unruh, “Quantum correlations across the black hole horizon,” Phys. Rev. D 81, 124033 (2010). [17] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, “Hawking Radiation from an Acoustic Black Hole on an Ion Ring,” Phys. Rev. Lett. 104, 250403 (2010). [18] P. M. Alsing, D. McMahon, and G. J. Milburn, “Teleportation in a non-inertial frame,” J. Opt. B: Quantum Semiclass. Opt. 6, S834 (2004). [19] A. Dragan, J. Doukas, E. Martin-Martinez, and D. E. Bruschi, “Localised projective measurement of a relativistic quantum field in non-inertial frames,” arXiv:1203.0655 . [20] G. Vidal and R. F. Werner, “A computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002). [21] S. W. Hawking, “Black hole explosions?,” Nature 248, 30 (1974). [22] M. Montero and E. Martín-Martínez, “The entangling side of the Unruh-Hawking effect,” JHEP 2011, 1 (2011). [23] G. Adesso, I. Fuentes-Schuller, and M. Ericsson, “Continuous-variable entanglement sharing in non-inertial frames,” Phys. Rev. A 76, 062112 (2007).
Collections