Publication:
Two formalisms, one renormalized stress-energy tensor

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-04-02
Authors
Barceló, Carlos
Carballo-Rubio, Raúl
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We explicitly compare the structure of the renormalized stress-energy tensor of a massless scalar field in a (1 + 1) curved spacetime as obtained by two different strategies: normal-mode construction of the field operator and one-loop effective action. We pay special attention to where and how the information related to the choice of vacuum state in both formalisms is encoded. By establishing a clear translation map between both procedures, we show that these two potentially different renormalized stress-energy tensors are actually equal, when using vacuum-state choices related by this map. One specific aim of the analysis is to facilitate the comparison of results regarding semiclassical effects in gravitational collapse as obtained within these different formalisms.
Description
© 2012 American Physical Society. This work originated from a conversation we had with Emil Mottola. We thank him for that and for all his comments during its development. We also want to thank Víctor Aldaya, Manuel Calixto, Julio Guerrero, and Guillermo A. Mena Marugán for helpful comments and discussions. Financial support was provided by the Spanish MICINN through Projects No. FIS2008-06078-C03-01 and No. FIS2008-06078-C03-03 and by the Junta de Andalucía through Project No. FQM219. R. C. acknowledges support from CSIC through the JAE-Predoc program, co-funded by FSE.
Unesco subjects
Keywords
Citation
[1] D. N. Page, Phys. Rev. D 13, 198 (1976). [2] P. C. W. Davies, S. A. Fulling, and W. G. Unruh, Phys. Rev. D 13, 2720 (1976). [3] S. M. Christensen and S. A. Fulling, Phys. Rev. D 15, 2088 (1977); P. C. W. Davies and S. A. Fulling, Proc. R. Soc. A 354, 59–77 (1977). [4] E. Mottola and R. Vaulin, Phys. Rev. D 74, 064004 (2006). [5] V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge, England, 2007), p. 273. [6] R. M. Wald, Commun. Math. Phys. 54, 1 (1977). [7] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-time, London Math. Soc. Student Texts, Vol. 17 (Cambridge University Press, Cambridge, England, 1989), p. 1. [8] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Phys. Rev. D 77, 044032 (2008). [9] R. M. Wald, Quantum Field Theory in Curved Space-time and Black Hole Thermodynamics (University Press, Chicago, 1994), p. 205. [10] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982). [11] A. O. Barvinsky and D. V. Nesterov, Nucl. Phys. B608, 333 (2001). [12] S. W. Hawking, Commun. Math. Phys. 55, 133 (1977). [13] D. G. Boulware, Phys. Rev. D 11, 1404 (1975). [14] A. Corichi, J. Cortez, and H. Quevedo, Ann. Phys. (N.Y.) 313, 446 (2004). [15] A. Ashtekar and A. Magnon, Proc. R. Soc. A 346, 375 (1975). [16] A. Fabbri and J. Navarro-Salas, Modeling Black Hole Evaporation (Imperial College Press, London, England, 2005), p. 334. [17] I. Agulló, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. D 76, 044018 (2007). [18] M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, Lect. Notes Phys., Vol. 759 (Springer, New York, 2008), p. 1. [19] A. Corichi, J. Cortez, G. A. Mena Marugán, and J. M. Velhinho, Classical Quantum Gravity 23, 6301 (2006). [20] I. Agulló, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. Lett. 105, 211305 (2010). [21] S. A. Fulling, M. Sweeny, and R. M. Wald, Commun. Math. Phys. 63, 257 (1978); S. A. Fulling, F. J. Narcowich, and R. M. Wald, Ann. Phys. (N.Y.) 136, 243 (1981). [22] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46, 206(E) (1976). [23] W. G. Unruh, Phys. Rev. D 14, 870 (1976). [24] M. Visser, C. Barcelo, S. Liberati, and S. Sonego, Proc. Sci., 2008 (2008) 010 [arXiv:0902.0346]. [25] E. Mottola, Acta Phys. Pol. B 41, 2031 (2010); J. Phys. Conf. Ser. 314, 012010 (2011).
Collections