Publication:
The Default Mode Network is functionally and structurally disrupted in amnestic mild cognitive impairment - A bimodal MEG-DTI study

Research Projects
Organizational Units
Journal Issue
Abstract
Over the past years, several studies on Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) have reported Default Mode Network (DMN) deficits. This network is attracting increasing interest in the AD community, as it seems to play an important role in cognitive functioning and in beta amyloid deposition. Attention has been particularly drawn to how different DMN regions are connected using functional or structural connectivity. To this end, most studies have used functional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET) or Diffusion Tensor Imaging (DTI). In this study we evaluated (1) functional connectivity from resting state magnetoencephalography (MEG) and (2) structural connectivity from DTI in 26 MCI patients and 31 age-matched controls. Compared to controls, the DMN in the MCI group was functionally disrupted in the alpha band, while no differences were found for delta, theta, beta and gamma frequency bands. In addition, structural disconnection could be assessed through a decreased fractional anisotropy along tracts connecting different DMN regions. This suggests that the DMN functional and anatomical disconnection could represent a core feature of MCI. (C) 2014 The Authors. Published by Elsevier Inc.
Description
© 2014 The Authors. This work was supported the projects PSI2009-14415-C03-01 and PSI2012-38375-C03-01 from the Spanish Ministry of Science and Economy. Research by P.G. and by L.C. was supported by PICATA predoctoral and postdoctoral contracts of the Moncloa Campus of International Excellence (UCM–UPM), respectively. J.A.P.P was supported by the Spanish Ministry of Education through the National Program FPU (AP2010-1317). S.A. was supported by a predoctoral fellowship from the Basque Government.
Unesco subjects
Keywords
Citation
1) Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G.B., Filippi, M., 2012. Resting state fMRI in Alzheimer3s disease: beyond the default mode network. Neurobiology of Aging, 33, 1564–1578. http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.00721813210. 2) Babiloni, C., Frisoni, G.B., Vecchio, F., Lizio, R., Pievani, M., Cristina, G., Fracassi, C., Vernieri, F., Rodríguez, G., Nobili, F., Ferri, R., Rossini, P.M., 2011. Stability of clinical condition in mild cognitive impairment is related to cortical sources of alpha rhythms: an electroencephalographic study. Human Brain Mapping, 32, 1916–1931. http://dx.doi.org/10.1002/hbm.2115721181798. 3) Bate, C., Williams, A., 2011. Amyloid-β-induced synapse damage is mediated via crosslinkage of cellular prion proteins. Journal of Biological Chemistry, 286, 37955–37963. http://dx.doi.org/10.1074/jbc.M111.24872421900234. 4) Bero, A.W., Bauer, A.Q., Stewart, F.R., White, B.R., Cirrito, J.R., Raichle, M.E., Culver, J.P., Holtzman, D.M., 2012. Bidirectional relationship between functional connectivity and amyloid-β deposition in mouse brain. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 32, 4334–4340. http://dx.doi.org/10.1523/JNEUROSCI.5845-11.201222457485. 5) Bhattacharya, B.S., Coyle, D., Maguire, L.P., 2011. A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer's disease. Neural Networks: the Official Journal of the International Neural Network Society, 24, 631–645. http://dx.doi.org/10.1016/j.neunet.2011.02.00921435838. 6) Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., Adriaanse, S.M., Damoiseaux, J.S., Scheltens, P., van Berckel, B.N.M., Barkhof, F., 2012. Resting-state fMRI changes in Alzheimer3s disease and mild cognitive impairment. Neurobiology of Aging, 33, 2018–2028. http://dx.doi.org/10.1016/j.neurobiolaging.2011.07.00321862179. 7) Bozoki, A.C., Korolev, I.O., Davis, N.C., Hoisington, L.A., Berger, K.L., 2012. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer's disease: a DTI/FDG-PET study. Human Brain Mapping, 33, 1792–1802. http://dx.doi.org/10.1002/hbm.2132021674695. 8) Bozzali, M., 2002. White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. Journal of Neurology, Neurosurgery, and Psychiatry 72, 742–746. http://dx.doi.org/10.1136/jnnp.72.6.74212023417. 9) Brier, M.R., Thomas, J.B., Snyder, A.Z., Benzinger, T.L., Zhang, D., Raichle, M.E., Holtzman, D.M., Morris, J.C., Ances, B.M., 2012. Loss of intranetwork and internetwork resting state functional connections with Alzheimer's disease progression. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 32, 8890–8899. http://dx.doi.org/10.1523/JNEUROSCI.5698-11.201222745490. 10) Brookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R., Owen, J.P., Morris, P.G., Nagarajan, S.S., 2011a. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage, 56, 1082–1104. http://dx.doi.org/10.1016/j.neuroimage.2011.02.05421352925. 11) Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson, M.C., Barnes, G.R., Smith, S.M., Morris, P.G., 2011b. Investigating the electrophysiological basis of resting state networks using agnetoencephalography. Proceedings of the National Academy of Sciences of the United States of America, 108, 16783–16788. http://dx.doi.org/10.1073/pnas.111268510821930901. 12) Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. http://dx.doi.org/10.1196/annals.1440.01118400922. 13) Damoiseaux, J.S., Prater, K.E., Miller, B.L., Greicius, M.D., 2012. Functional connectivity tracks clinical deterioration in Alzheimer's disease. Neurobiol. Aging, 33, 828. e19–828.e30. 14) Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980. http://dx.doi.org/10.1016/j.neuroimage.2006.01.02116530430. 15) Fellgiebel, A., Müller, M.J., Wille, P., Dellani, P.R., Scheurich, A., Schmidt, L.G., Stoeter, P., 2005. Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol. Aging, 26, 1193–1198. 16) Fu, J.-L., Liu, Y., Li, Y.-M., Chang, C., Li, W.-B., 2014. Use of diffusion tensor imaging for evaluating changes in the microstructural integrity of white matter over 3 years in patients with amnesic-type mild cognitive impairment converting to Alzheimer's disease. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 24, 343–348. http://dx.doi.org/10.1111/j.1552-6569.2011.00677.x24251793. 17) Garcés, P., Vicente, R., Wibral, M., Pineda-Pardo, J.Á., López, M.E., Aurtenetxe, S., Marcos, A., de Andrés, M.E., Yus, M., Sancho, M., Maestú, F., Fernández, A., 2013. Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Frontiers in Aging Neuroscience 5, 100. http://dx.doi.org/10.3389/fnagi.2013.0010024409145. 18) Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258. http://dx.doi.org/10.1073/pnas.013505810012506194. 19) Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V., 2004. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101, 4637–4642. http://dx.doi.org/10.1073/pnas.030862710115070770. 20) Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., Foster, N.L., Jack, C.R., Galasko, D.R., Doody, R., Kaye, J., Sano, M., Mohs, R., Gauthier, S., Kim, H.T., Jin, S., Schultz, A.N., Schafer, K., Mulnard, R., van Dyck, C.H., Mintzer, J., Zamrini, E.Y., CahnWeiner, D., Thal, L.J., 2004. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of Neurology, 61, 59–66. http://dx.doi.org/10.1001/archneur.61.1.5914732621. 21) Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O., 2008. Mapping the structural core of human cerebral cortex. PLoS Biology 6, e159. http://dx.doi.org/10.1371/journal.pbio.006015918597554. 22) Hedden, T., Van Dijk, K.R.A., Becker, J.A., Mehta, A., Sperling, R.A., Johnson, K.A., Buckner, R.L., 2009. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 29, 12686–12694. http://dx.doi.org/10.1523/JNEUROSCI.3189-09.200919812343. 23) Hindriks, R., van Putten, M.J.A.M., 2013. Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations. Neuroimage, 70, 150–163. http://dx.doi.org/10.1016/j.neuroimage.2012.12.01823266701. 24) Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P., 2009. Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106, 2035–2040. http://dx.doi.org/10.1073/pnas.081116810619188601. 25) Jbabdi, S., Johansen-Berg, H., 2011. Tractography: where do we go from here? Brain Connectivity 1, 169–183. http://dx.doi.org/10.1089/brain.2011.003322433046. 26) Johansen-Berg, H., Behrens, T.E.J., Robson, M.D., Drobnjak, I., Rushworth, M.F.S., Brady, J.M., Smith, S.M., Higham, D.J., Matthews, P.M., 2004. Changes in connectivity profiles de-fine functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 101, 13335–13340. http://dx.doi.org/10.1073/pnas.040374310115340158. 27) Jones, D.K., Knösche, T.R., Turner, R., 2013. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage, 73, 239–254. http://dx.doi.org/10.1016/j.neuroimage.2012.06.08122846632. 28) Jones, D.T., Machulda, M.M., Vemuri, P., McDade, E.M., Zeng, G., Senjem, M.L., Gunter, J.L., Przybelski, S.A., Avula, R.T., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack, C.R., 2011. Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology, 77, 1524–1531. http://dx.doi.org/10.1212/WNL.0b013e318233b33d21975202. 29) Khalsa, S., Mayhew, S.D., Chechlacz, M., Bagary, M., Bagshaw, A.P., 2013. The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure–function relationships. Neuroimage, http://dx.doi.org/10.1016/j.neuroimage.2013.12.02224365673. 30) Kiuchi, K., Morikawa, M., Taoka, T., Nagashima, T., Yamauchi, T., Makinodan, M., Norimoto, K., Hashimoto, K., Kosaka, J., Inoue, Y., Inoue, M., Kichikawa, K., Kishimoto, T., 2009. Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease: a diffusion tensor tractography study. Brain Research, 1287, 184–191. http://dx.doi.org/10.1016/j.brainres.2009.06.05219559010. 31) Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V., Pylkova, L.V., 2011. The default mode network and EEG α oscillations: an independent component analysis. Brain Research, 1402, 67–79. http://dx.doi.org/10.1016/j.brainres.2011.05.05221683942. 32) Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A., Alexander, A.L., 2003. White matter tractography using diffusion tensor deflection. Human Brain Mapping, 18, 306–321. http://dx.doi.org/10.1002/hbm.1010212632468. 33) Luckhoo, H., Hale, J.R., Stokes, M.G., Nobre, A.C., Morris, P.G., Brookes, M.J., Woolrich, M.W., 2012. Inferring task-related networks using independent component analysis in magnetoencephalography. Neuroimage, 62, 530–541. http://dx.doi.org/10.1016/j.neuroimage.2012.04.04622569064. 34) Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods 164, 177–190. http://dx.doi.org/10.1016/j.jneumeth.2007.03.02417517438. 35) Matsuda, H., 2001. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease. Annals of Nuclear Medicine, 15, 85–92. http://dx.doi.org/10.1007/BF0298859611448080. 36) Mayhew, S.D., Ostwald, D., Porcaro, C., Bagshaw, A.P., 2013. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network. Neuroimage, 76, 362–372. http://dx.doi.org/10.1016/j.neuroimage.2013.02.07023507378. 37) Mintun, M.A., Larossa, G.N., Sheline, Y.I., Dence, C.S., Lee, S.Y., Mach, R.H., Klunk, W.E., Mathis, C.A., DeKosky, S.T., Morris, J.C., 2006. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology, 67, 446–452. http://dx.doi.org/10.1212/01.wnl.0000228230.26044.a416894106. 38) Moretti, D.V., Pievani, M., Fracassi, C., Binetti, G., Rosini, S., Geroldi, C., Zanetti, O., Rossini, P.M., Frisoni, G.B., 2009. Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo–hippocampal complex atrophy. Journal of Alzheimer’s Disease: JAD, 17, 349–357. http://dx.doi.org/10.3233/JAD-2009-105919363263. 39) Nolte, G., 2003. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Physics in Medicine and Biology, 48, 3637–3652. http://dx.doi.org/10.1088/00319155/48/22/00214680264. 40) Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869. http://dx.doi.org/10.1155/2011/15686921253357. 41) Petersen, R.C., 2001. Current concepts in mild cognitive impairment. Archives of Neurology 58, 1985–1992. http://dx.doi.org/10.1001/archneur.58.12.198511735772. 42) Petersen, R.C., Negash, S., 2008. Mild cognitive impairment: an overview. CNS Spectrums, 13, 45–5318204414. 43) Petrella, J.R., Sheldon, F.C., Prince, S.E., Calhoun, V.D., Doraiswamy, P.M., 2011. Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology, 76, 511–517. http://dx.doi.org/10.1212/WNL.0b013e31820af94e21228297. 44) Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., Li, K., 2010. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage 50, 48–55. http://dx.doi.org/10.1016/j.neuroimage.2009.12.02520006713. 45) Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L., 2001. A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682. http://dx.doi.org/10.1073/pnas.98.2.67611209064. 46) Raichle, M.E., Snyder, A.Z., 2007. A default mode of brain function: a brief history of an evolving idea. Neuroimage, 37, 1083–1090. http://dx.doi.org/10.1016/j.neuroimage.2007.02.041. 47) Reddy, P.H., Beal, M.F., 2008. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends in Molecular Medicine, 14, 45–53. http://dx.doi.org/10.1016/j.molmed.2007.12.00218218341. 48) Rombouts, S.A.R.B., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P., 2005. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Human Brain Mapping 26, 231–239. http://dx.doi.org/10.1002/hbm. 2016015954139. 49) Rosazza, C., Minati, L., 2011. Resting-state brain networks: literature review and clinical applications. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 32, 773–785. http://dx.doi.org/10.1007/s10072-011-0636-y21667095. 50) Rosen, W.G., Terry, R.D., Fuld, P.A., Katzman, R., Peck, A., 1980. Pathological verification of ischemic score in differentiation of dementias. Annals of Neurology, 7, 486–488. http://dx.doi.org/10.1002/ana.4100705167396427. 51) Sambataro, F., Murty, V.P., Callicott, J.H., Tan, H.-Y., Das, S., Weinberger, D.R., Mattay, V.S., 2010. Age-related alterations in default mode network: impact on working memory performance. Neurobiol. Aging, 31, 839–852. 52) Serra, L., Cercignani, M., Lenzi, D., Perri, R., Fadda, L., Caltagirone, C., Macaluso, E., Bozzali, M., 2010. Grey and white matter changes at different stages of Alzheimer's disease. Journal of Alzheimer’s Disease: JAD, 19, 147–159. http://dx.doi.org/10.3233/JAD-2010-122320061634. 53) Sheline, Y.I., Raichle, M.E., Snyder, A.Z., Morris, J.C., Head, D., Wang, S., Mintun, M.A., 2010. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biological Psychiatry, 67, 584–587. http://dx.doi.org/10.1016/j.biopsych.2009.08.02419833321. 54) Smith, S.M., 2002. Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155. http://dx.doi.org/10.1002/hbm.1006212391568. 55) Sorg, C., Riedl, V., Mühlau, M., Calhoun, V.D., Eichele, T., Läer, L., Drzezga, A., Förstl, H., Kurz, A., Zimmer, C., Wohlschläger, A.M., 2007. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 18760–18765. http://dx.doi.org/10.1073/pnas.070880310418003904. 56) Sperling, R.A., Laviolette, P.S., O’Keefe, K., O3Brien, J., Rentz, D.M., Pihlajamaki, M., Marshall, G., Hyman, B.T., Selkoe, D.J., Hedden, T., Buckner, R.L., Becker, J.A., Johnson, K.A., 2009. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63, 178–188. http://dx.doi.org/10.1016/j.neuron.2009.07.00319640477. 57) Stam, C.J., Nolte, G., Daffertshofer, A., 2007. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28, 1178–1193. http://dx.doi.org/10.1002/hbm.2034617266107. 58) Taulu, S., Simola, J., 2006. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine and Biology 51, 1759–1768. http://dx.doi.org/10.1088/0031-9155/51/7/00816552102. 59) Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Bio-Medical Engineering, 44, 867–880. http://dx.doi.org/10.1109/10.6230569282479. 60) Wang, L., Li, H., Liang, Y., Zhang, J., Li, X., Shu, N., Wang, Y.Y., Zhang, Z., 2013. Amnestic mild cognitive impairment: topological reorganization of the default-mode network. Radiology, 268, 501–514. http://dx.doi.org/10.1148/radiol.1312157323481166. 61) Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K. A., Wang, L., Shen, D., 2012. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59, 2045–2056. http://dx.doi.org/10.1016/j.neuroimage.2011.10.01522019883. 62) Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., Leirer, V.O., 1982–1983. Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research, 17, 37–49. http://dx.doi.org/10.1016/0022-3956(82)90033-47183759.
Collections