Publication:
On the Q-switched operation of Titanium: sapphire lasers using a graphene-based saturable absorber mirror

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We numerically demonstrate Q-switched operation of Titanium:Sapphire lasers using mono and multilayer graphene, deposited on a totally reflecting end mirror as a saturable absorber. Output energies, pulse duration and repetition frequencies of the Q-switched pulse trains are given as a function of the pump intensity for different number of graphene layers and cavity lengths. For the geometries studied, pulses from 17 to 491 ns can be achieved, with energies ranging from 11 to 74 μJ and repetition rates from 0.06 to 2.5 MHz. These results can be useful for designing and building laser cavities for Q-switched and mode-locked operation in laser media with short lifetimes as Titanium:Sapphire.
Description
© 2015 Elsevier Ltd. This work was partially supported by the projects Santander-UCM PR6/13-18875 and FIS2013-1709-P from MINECO. H. Crespo acknowledges Grant PTDC/FIS/122511/2010 from Fundaçâo para a Ciência e Tecnologia, Portugal, co-funded by COMPETE and FEDER. Support from the European Science Foundation through the SILMI programme (Super-intense laser-matter interactions), Grant 6658, is gratefully acknowledged.
Keywords
Citation
[1] Cafiso SDDD, Ugolotti E, Schmidt A, Petrov V, Griebner U, Agnesi A, Cho WB, Jung BH, Rotermund F, Bae S, Hong BH, Reali G, Pirzio F. Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. Opt. Lett. 2013;38(10):1745–7. http://dx.doi.org/10.1364/OL.38.001745 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-38-10-1745〉. [2] Roberts A, Cormode D, Reynolds C, Newhouse-Illige T, LeRoy BJ, Sandhu AS. Response of graphene to femtosecond high-intensity laser irradiation. Appl. Phys. Lett. 2011;99(5). http://dx.doi.org/10.1063/1.3623760 URL 〈http://scitation.aip.org/content/aip/journal/apl/99/5/10.1063/1.3623760〉. [3] Cho WB, Kim JW, Lee HW, Bae S, Hong BH, Choi SY, Baek IH, Kim K, Yeom D-I, Rotermund F. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm. Opt. Lett. 2011;36(20):4089–91. http://dx. doi.org/10.1364/OL.36.004089 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-36-20-4089〉. [4] Peng R, Tang L, Guo L, Zhang X, Li F, Xu Z. Picosecond laser oscillator with a cavity design for stable {CW} mode-locking operation. Opt. Laser Technol. 2010;42(8):1282–5. http://dx.doi.org/10.1016/j.optlastec.2010.04.003 URL 〈http://www.sciencedirect.com/science/article/pii/S003039921000099X〉. [5] Haiml M, Grange R, Keller U. Optical characterization of semiconductor saturable absorbers. Appl. Phys. B 2004;79(3):331–9. http://dx.doi.org/10.1007/s00340-004-1535-1 URL 〈http://dx.doi.org/10.1007/s00340-004-1535-1〉. [6] Saraceno C, Schriber C, Mangold M, Hoffmann M, Heckl O, Baer C, Golling M, Südmeyer T, Keller U. Sesams for high-power oscillators: design guidelines and damage thresholds. IEEE J. Select. Top. Quantum Electron. 2012;18(1):29–41. http://dx.doi.org/10.1109/JSTQE.2010.2092753. [7] Hasan T, Sun Z,Wang F, Bonaccorso F, Tan PH, Rozhin AG, Ferrari AC. Nanotube polymer composites for ultrafast photonics. Adv. Mater. 2009;21(38–39):3874–99. http://dx.doi.org/10.1002/adma.200901122 URL 〈http://dx.doi.org/10.1002/adma.200901122〉. [8] Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q-H, Tang D, Loh K. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 2011;4(3):297–307. http://dx.doi.org/10.1007/s12274-010-0082-9 URL 〈http://dx.doi.org/10.1007/s12274-010-0082-9〉. [9] Xu J-L, Li X-L, Wu Y-Z, Hao X-P, He J-L, Yang K-J. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser. Opt. Lett. 2011;36(10):1948–50.http://dx.doi.org/10.1364/OL.36.001948 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-36-10-1948〉. [10] Baek IH, Lee HW, Bae S, Hong BH, Ahn YH, Yeom D-I, Rotermund F. Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber. Appl. Phys. Express 2012;5(3):032701 URL 〈http://stacks.iop.org/1882-0786/5/i.3/a.032701〉. [11] Xu SC, Man BY, Jiang SZ, Feng DJ, Gao SB, Chen CS, Liu M, Yang C, Zhang C, Bi D, Liu FY, Meng X. Sapphire-based graphene saturable absorber for long-time working femtosecond lasers. Opt. Lett. 2014;39(9):2707–10. http://dx.doi.org/10.1364/OL.39.002707 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-39-9-2707〉. [12] Luo Z, Zhou M, Weng J, Huang G, Xu H, Ye C, Cai Z. Graphene-based passively q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 2010;35 (21):3709–11. http://dx.doi.org/10.1364/OL.35.003709 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-35-21-3709〉. [13] Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari AC. Graphene q-switched, tunable fiber laser. Appl. Phys. Lett. 2011;98(7). http://dx.doi.org/10.1063/1.3552684 URL 〈http://scitation.aip.org/content/aip/journal/apl/98/7/10.1063/1.3552684〉. [14] Han M, Zhang S, Li X, Zhang H, Wen F, Yang Z. High-energy, tunable-wavelengths, q-switched pulse laser. Opt. Commun. 2014;326(0):24–8. http://dx.doi.org/10.1016/j.optcom.2014.04.012 URL 〈http://www.sciencedirect.com/science/article/pii/S0030401814003460〉. [15] Kasim N, Anyi CL, Haris H, Ahmad F, Ali NM, Ahmad H, Munajat Y, Harun SW. Q-switched erbium-doped fiber laser using multi-layer graphene based saturable absorber. J. Nonlinear Opt. Phys. Mater. 2014;23(01):1450009. http://dx.doi.org/10.1142/S021886351450009X arxiv:10.1142/S021886351450009X; URL 〈abs/10.1142/S021886351450009X〉. [16] Muhammad FD, Zulkifli MZ, Ahmad H. Graphene based q-switched tunables-band fiber laser incorporating arrayed waveguide gratings (awg). J. Nonlinear Opt. Phys. Mater. 2014;23(01):1450004. http://dx.doi.org/10.1142/S0218863514500040 arXiv: http://www.worldscientific.com/doi/pdf/10.1142/S0218863514500040, URL 〈http://www.worldscientific.com/doi/abs/10.1142/265S0218863514500040〉. [17] Tang Y, Yu X, Li X, Yan Z, Wang QJ. High-power thulium fiber laser q-switched with single-layer graphene. Opt. Lett. 2014;39(3):614–7. http://dx.doi.org/10.1364/OL.39.000614 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-39-3-614〉. [18] Tan Y, Cheng C, Akhmadaliev S, Zhou S, Chen F. Nd:YAG waveguide laser q-switched by evanescent-field interaction with graphene. Opt. Express 2014;22(8):9101–6. http://dx.doi.org/10.1364/OE.22.009101 URL 〈http://www.opticsexpress.org/abstract.cfm?URI.oe-22-8-9101〉. [19] Jiang M, Ren Z, Zhang Y, Lu B, Wan L, Bai J. Graphene-based passively q-switched diode-side-pumped Nd:YAG solid laser. Opt. Commun. 2011;284 (22):5353–6. http://dx.doi.org/10.1016/j.optcom.2011.07.063 URL 〈http://www.sciencedirect.com/science/article/pii/S0030401811008194〉. [20] Yu H, Chen X, Hu X, Zhuang S, Wang Z, Xu X, Wang J, Zhang H, Jiang M. Graphene as a q-switcher for neodymium-doped lutetium vanadate laser. Appl. Phys. Express 2011;4(2):022704 URL 〈http://stacks.iop.org/1882-0786/4/i.2/a.022704〉. [21] Lei Li X, Long Xu J, Zhong Wu Y, Liang He J, Peng Hao X. Large energy laser pulses with high repetition rate by graphene q-switched solid-state laser. Opt. Express 2011;19(10):9950–5. http://dx.doi.org/10.1364/OE.19.009950 URL 〈http://www.opticsexpress.org/abstract.cfm?URI.oe-19-10-9950〉. [22] Wang Q, Teng H, Zou Y, Zhang Z, Li D, Wang R, Gao C, Lin J, Guo L, Wei Z. Graphene on SiC as a q-switcher for a 2 μm laser. Opt. Lett. 2012;37(3):395–7. http://dx.doi.org/10.1364/OL.37.000395 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-37-3-395〉. [23] Xie GQ, Ma J, Lv P, Gao WL, Yuan P, Qian LJ, Yu HH, Zhang HJ, Wang JY, Tang DY. Graphene saturable absorber for q-switching and mode locking at 2 μm wavelength. Opt. Mater. Express 2012;2(6):878–83. http://dx.doi.org/10.1364/OME.2.000878 URL 〈http://www.opticsinfobase.org/ome/abstract.cfm?URI.ome-2-6-878〉. [24] Matía-Hernando P, Guerra JM, Weigand R. An Nd:ylf laser q-switched by a monolayer-graphene saturable-absorber mirror. Laser Phys. 2013;23(2):025003 URL 〈http://stacks.iop.org/1555-6611/23/i.2/a.025003〉. [25] Jin CJ, Chen XM, Li LF, Qi M, Bai Y, Ren ZY, Bai JT. A graphene-based passively q-switched Ho:YAG laser in-band pumped by a diode-pumped Tm:YLF solidstate laser. Laser Phys. 2014;24(3):035801 URL 〈http://stacks.iop.org/1555-6611/24/i.3/a.035801〉. [26] Xu S, Man B, Jiang S, Chen C, Yang C, Liu M, Huang Q, Zhang C, Bi D, Meng X, Liu F. Watt-level passively q-switched mode-locked YVO4/Nd:YVO4 laser operating at 1.06 μm using graphene as a saturable absorber. Opt. Laser Technol. 2014;56(0):393–7. http://dx.doi.org/10.1016/j.optlastec.2013.09.028 URL 〈http://www.sciencedirect.com/science/article/pii/S0030399213003538〉. [27] Shi RP, Bai Y, Qi M, Chen XM, Wei HD, Ren ZY, Bai JT. A passively mode-locked intracavity frequency doubled nd:yvo 4 femtosecond green laser based on graphene. Laser Phys. Lett. 2014;11(2):025001 URL 〈http://stacks.iop.org/1612-202X/11/i.2/a.025001〉. [28] Cizmeciyan MN, Kim JW, Bae S, Hong BH, Rotermund F, Sennaroglu A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Opt. Lett. 2013; 38(3):341–3. http://dx.doi.org/10.1364/OL.38.000341 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-38-3-341〉. [29] Xing Q, Zhang W, Yoo K. Self-q switched self-mode-locked Ti:sapphire laser. Opt. Commun. 1995;119(12):113–6. http://dx.doi.org/10.1016/0030-4018(95)96930-2 URL 〈http://www.sciencedirect.com/science/article/pii/0030401895969302〉. [30] Sali E, Ignesti E, Cavalieri S, Fini L, Tognetti M, Buffa R. A tuneable, single-mode titanium-doped-sapphire laser source with variable pulse duration in the nanosecond regime. Opt. Commun. 2009;282(16):3330–4. http://dx.doi.org/10.1016/j.optcom.2009.05.014 URL 〈http://www.sciencedirect.com/science/article/pii/S0030401809004660〉. [31] Sali E, Ignesti E, Cavalieri S, Fini L, Tognetti M, Buffa R. A titanium-dopedsapphire laser source with tunable frequency, single-mode emission, and adjustable pulse duration. Laser Phys. 2010;20(5):1126–31. http://dx.doi.org/10.1134/S1054660X10090136 URL 〈http://dx.doi.org/10.1134/S1054660X10090136〉. [32] Bartels A, Dekorsy T, Kurz H. Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy. Opt. Lett. 1999;24(14):996–8. http://dx.doi.org/10.1364/OL.24.000996 URL 〈http://ol.osa.org/abstract.cfm?URI.ol-24-14-996〉. [33] Li C-H, Benedick AJ, Fendel P, Glenday AG, Kartner FX, Phillips DF, Sasselov D, Szentgyorgyi A, Walsworth RL. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s^-1. Nature 2008;452 (7187):610–2 URL 〈http://dx.doi.org/10.1038/nature06854〉. [34] Spühler GJ, Paschotta R, Fluck R, Braun B, Moser M, Zhang G, Gini E, Keller U. Experimentally confirmed design guidelines for passively q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B 1999;16(3):376–88. http://dx.doi.org/10.1364/JOSAB.16.000376 URL 〈http://josab.osa.org/abstract.cfm?URI.josab-16-3-376〉. [35] Haus H. Parameter ranges for cw passive mode locking. IEEE J. Quantum Electron. 1976;12(3):169–76. http://dx.doi.org/10.1109/JQE.1976.1069112. [36] Koechner W. Solid-State Laser Engineering. New York: Springer; 2006. [37] Kaertner FX, Brovelli LR, Kopf D, Kamp M, Calasso IG, Keller U. Control of solid state laser dynamics by semiconductor devices. Opt. Eng. 1995;34(7):2024–36.http://dx.doi.org/10.1117/12.204794 URL 〈http://dx.doi.org/10.1117/12.204794〉.
Collections