Publication:
Detection of parity violation in chiral molecules by external tuning of electroweak optical activity

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-07-23
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A proposal is made to measure the parity-violating energy difference between enantiomers of chiral molecules by modifying the dynamics of the two-state system using an external chiral field, in particular, circularly polarized light. The intrinsic molecular parity-violating energy could be compensated by this external chiral field, with the subsequent change in the optical activity. From the observation of changes in the time-averaged optical activity of a sample with initial chiral purity and minimized environment effects, the value of the intrinsic parity-violating energy could be extracted. A discussion is made on the feasibility of this measurement.
Description
©2009 The American Physical Society. This was funded by the MEC (Spain) under Projects No. CTQ2005-09185-C02-02, No. FIS2004-02461, and No. FIS2007-65382 and supported by Grants No. BES-2006-11976 (P.B.) and No. BES-2006-7454 (R.P.deT.).
Keywords
Citation
[1] T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956). [2] C. S. Wu et al., Phys. Rev. 105, 1413 (1957). [3] A. M. Bouchiat and C. C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997). [4] V. S. Letokhov, Phys. Lett. A 53, 275 (1975). [5] R. A. Hegstrom, D. W. Rein, and P. G. H. Sandars, J. Chem. Phys. 73, 2329 (1980). [6] R. Zanasi, P. Lazzeretti, A. Ligabue, and A. Soncini, Phys. Rev. E 59, 3382 (1999). [7] J. K. Laerdahl, P. Schwerdtfeger, and H. M. Quiney, Phys. Rev. Lett. 84, 3811 (2000). [8] P. Soulard et al., Phys. Chem. Chem. Phys. 8, 79 (2006). [9] J. Crassous et al., Org. Biomol. Chem. 3, 2218 (2005). [10] R. A. Harris and L. Stodolsky, Phys. Lett. 78B, 313 (1978). [11] R. A. Harris and R. Silbey, J. Chem. Phys. 78, 7330 (1983). [12] R. A. Harris, Chem. Phys. Lett. 223, 250 (1994). [13] R. A. Harris, Y. Shi, and J. A. Cina, J. Chem. Phys. 101, 3459 (1994). [14] R. Silbey and R. A. Harris, J. Chem. Phys. 93, 7062 (1989). [15] R. A. Harris and L. Stodolsky, J. Chem. Phys. 74, 2145 (1981). [16] R. A. Harris, Chem. Phys. Lett. 365, 343 (2002). [17] A. J. MacDermott and R. A. Hegstrom, Chem. Phys. 305, 55 (2004). [18] M. Quack, Chem. Phys. Lett. 132, 147 (1986). [19] M. Quack, Angew. Chem., Int. Ed. Engl. 28, 571 (1989). [20] F. Hund, Z. Phys. 43, 805 (1927). [21] M. Quack, Annu. Rev. Phys. Chem. 59, 741 (2008). [22] L. D. Barron, Mol. Phys. 43, 1395 (1981). [23] M. Avalos et al., Chem. Rev. 98, 2391 (1998). [24] J. Shao and P. Hänggi, J. Chem. Phys. 107, 9935 (1997). [25] L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University Press, London, 2004). [26] W. Schollkopf and J. P. Toennies, Science 266, 1345 (1994). [27] S. Goyal, D. L. Schutt, and G. Scoles, Phys. Rev. Lett. 69, 933 (1992). [28] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). [29] J. Kucirka and A. G. Shekhtmann, Phys. Lett. A 221, 273 (1996). [30] K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 2433 (2002). [31] K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002). [32] Y. Ma and A. Salam, Chem. Phys. 324, 367 (2006).
Collections