¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

Hilbert space of wormholes

Impacto

Downloads

Downloads per month over past year

Garay Elizondo, Luis Javier (1993) Hilbert space of wormholes. Physical review D, 48 (4). pp. 1710-1721. ISSN 0556-2821

[thumbnail of Garay47.pdf]
Preview
PDF
543kB

Official URL: http://dx.doi.org/10.1103/PhysRevD.48.1710




Abstract

Wormhole boundary conditions for the Wheeler-DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert-space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler-DeWitt operator is essentially self-adjoint. This provides us with a kind of probabilistic interpretation. In particular, giant wormholes will give extremely small contributions to any wormhole state. We also study the whole spectrum of the Wheeler-DeWitt operator and its role in the calculation of Green's functions and effective low-energy interactions.


Item Type:Article
Additional Information:

© 1993 The American Physical Society.
I wish to thank Pedro Gonzalez-Diaz, Guillermo Mena Marugan and Peter Tinyakov for their valuable comments on the manuscript. I also thank Instituto de Matematicas y Fisica Fundamental, C.S.I.C., for hospitality. This work was supported by DGICYT under Contract No. PB91-0052 and by a Basque Country Grant. The ESA IUE Observatory is affiliated with the Astrophysics Division, Space Science Department, ESTEC

Uncontrolled Keywords:Quantum wormholes; Universe; State; Gauge
Subjects:Sciences > Physics > Physics-Mathematical models
Sciences > Physics > Mathematical physics
ID Code:30114
Deposited On:18 May 2015 14:22
Last Modified:10 Dec 2018 15:10

Origin of downloads

Repository Staff Only: item control page