Publication:
Jordan–Brans–Dicke quantum wormholes and Coleman’s mechanism

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1993-07-12
Authors
García Bellido, Juan
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider the quantum gravity and cosmology of a Jordan-Brans-Dicke theory, predicted by string effective actions. We study its canonical formalism and find that the constraint algebra is that of general relativity, as a consequence of the general covariance of scalar-tensor theories. We also analyze the problem of boundary conditions and propose that they must be imposed in the Jordan frame, in which particles satisfy the strong equivalence principle. Specifically, we discuss both Hartle-Hawking and wormhole boundary conditions in the context of quantum cosmology. We find quantum wormhole solutions for Jordan-Brans-Dicke gravity even in the absence of matter. Wormholes may affect the constants of nature and, in particular, the Brans-Dicke parameter. Following Coleman's mechanism, we find a probability distribution which is strongly peaked at zero cosmological constant and infinite Brans-Dicke parameter. That is, we recover general relativity as the effective low energy theory of gravity.
Description
© Elsevier. We would like to thank Pedro González–Díaz, Guillermo Mena Marugán and Mariano Quirós for a careful reading of the manuscript and valuable discussions. We also thank Andrei Linde for clarifying our conclusions on extended inflation.
Unesco subjects
Keywords
Citation
[1] See for instance, M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory Cambridge Univ. Press (1987). [2] S. B. Giddings and A. Strominger, Nucl. Phys. B 306 (1988) 890. [3] E. S. Fradkin and A. A. Tseytlin, Nucl. Phys. B 261 (1985) 1; Phys. Lett. B 158 (1985) 316. [4] P. Jordan, Nature (London) 164 (1949) 637; Z. Phys. 157 (1959) 112; C. Brans and R. H. Dicke, Phys. Rev. 124 (1961) 925; R. H. Dicke, Phys. Rev. 125 (1962) 2163; C. Brans, Phys. Rev. 125 (1962) 2194. [5] K. Kikkawa and M. Yamasaki, Phys. Lett. B 149 (1984) 357; N. Sakai and I. Senda, Prog. Theor. Phys. 75 (1986) 692; V. Nair, A. Shapere, A. Strominger and F. Wilczek, Nucl. Phys. B 287 (1987) 402. [6] J. A. Casas, J. García–Bellido and M. Quirós, Nucl. Phys. B 361 (1991) 713. [7] J. A. Casas, J. García–Bellido and M. Quirós, Class. Quant. Grav. 9 (1992) 1371. [8] J. García–Bellido, Gravitation and Cosmology from String Effective Theories, Ph. D. Thesis (1992). [9] See for instance, S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). [10] For a general review see C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press (1981); Phys. Rep. 113 (1984) 345. [11] J. A. Casas, J.García–Bellido and M. Quirós, Mod. Phys. Lett. A 7 (1992) 447; Phys. Lett. B 278 (1992) 94. [12] D. La and P. J. Steinhardt, Phys. Rev. Lett. 62 (1989) 376; Phys. Lett. B 220 (1989) 375; E. J. Weinberg, Phys. Rev. D 40 (1989) 3950; D. La, P. J. Steinhardt and E. W. Bertschinger, Phys. Lett. B 231 (1989) 231; J. García–Bellido and M. Quirós, Phys. Lett. B 243 (1990) 45. [13] J. García–Bellido and M. Quirós, Nucl. Phys. B 368 (1992) 463. [14] A. H. Guth, Phys. Rev. D 23 (1981) 347; A. H. Guth and E. J. Weinberg, Nucl. Phys. B 212 (1983) 321. [15] A. D. Linde, Phys. Lett. B 108 (1982) 389; A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48 (1982) 1220. [16] S. del Campo and A. Vilenkin, Phys. Rev. D 40 (1989) 688; S. del Campo, Phys. Lett. B 259 (1991) 34. [17] A. K. Sanyal and B. Modak, Int. J. Mod. Phys. A 7 (1992) 4039. [18] K. Enqvist, S. Mohanty and D. V. Nanopoulos, Phys. Lett. B 192 (1987) 327; Int. J. Mod. Phys. A 4 (1989) 873; J. Wang and S. Mohanty Int. J. Mod. Phys. A 6 (1991) 2181; M. D. Pollock, Nucl. Phys. B 315 (1989) 528; Nucl. Phys. B 324 (1989) 187; Int. J. Mod. Phys. A 7 (1992) 4149. [19] S. W. Hawking, in General Relativity: An Einstein Centenary Survey, Eds. S. W. Hawking and W. Israel, Cambridge U.P., Cambridge (1979). [20] J. J. Halliwell, in Proceedings of the Seventh Jerusalem Winter School for Theoretical Physics: Quantum Cosmology and Baby Universes, Ed. T. Piran (1990). [21] S. W. Hawking and D. N. Page, Phys. Rev. D 42 (1990) 2655. [22] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28 (1983) 2960. [23] S. W. Hawking, Mod. Phys. Lett. A 5 (1990) 145; Mod. Phys. Lett. A 5 (1990) 453. [24] L. J. Garay, Phys. Rev. D 44 (1991) 1059. [25] S. W. Hawking, Phys. Rev. D 37 (1988) 904. [26] S. W. Hawking and R. Laflamme, Phys. Lett. B 209 (1988) 39. [27] S. Coleman, Nucl. Phys. B 307 (1988) 864. [28] S. Coleman, Nucl. Phys. B 310 (1988) 643. [29] R. Arnowitt, S. Deser and C. W. Misner, in Gravitation: An Introduction to Current Research, Ed. L. Witten, Wiley, New York (1962). [30] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation Freeman, San Francisco (1973). [31] K. Kuchař, in Quantum Gravity 2: A Second Oxford Symposium, Eds. C. J. Isham, R. Penrose and D. W. Sciama, Clarendon P., Oxford (1981). [32] C. J. Isham and K. Kuchař, Ann. Phys. 164 (1985) 288; Ann. Phys. 164 (1985) 316; [33] H. Goldstein, Classical Mechanics, Addison Wesley, Reading MA (1959). [34] S. W. Hawking, Comm. Math. Phys. 25 (1972) 167. [35] L. J. Garay, Wormholes in Quantum Cosmology, Ph. D. Thesis (1992). [36] J. J. Halliwell and S. W. Hawking, Phys. Rev. D 31 (1985) 1777. [37] A. Lyons, ”All–order wormhole vertex operators from the Wheeler– DeWitt equation” preprint ALBERTA-THY-3-92. [38] L. M. Campbell and L. J. Garay, Phys. Lett. B 254 (1991) 49. [39] H. F. Dowker, Nucl. Phys. B 331 (1990) 194. [40] C. Mathizhagan and V. B. Johri, Class. Quant. Grav. 1 (1984) L29. [41] I. Klebanov, L. Susskind and T. Banks, Nucl. Phys. B 317 (1989) 665. [42] S. W. Hawking, Nucl. Phys. B 335 (1990) 155. [43] S. Wolfram, Mathematica, 2nd Ed., Addison–Wesley (1991). [44] J. Preskill, Nucl. Phys. B 323 (1989) 141; B. Grinstein and M. B. Wise, Phys. Lett. B 212 (1988) 407; B. Grinstein, Nucl. Phys. B 321 (1989) 439. [45] T. Damour, G.W. Gibbons and C. Gundlach, Phys. Rev. Lett. 64 (1990) 123.
Collections