Publication:
Path-integral quantum cosmology: a class of exactly soluble scalar-field minisuperspace models with exponential potentials

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1991-04-15
Authors
Halliwel, Jonathan J.
Mena Marugán, Guillermo A.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study a class of minisuperspace models consisting of a homogenous isotropic universe with a minimally coupled homogenous scalar field with a potential alpha cosh(2-phi) + beta sinh(2-phi), where alpha and beta are arbitrary parameters. This includes the case of a pure exponential potential exp(2-phi), which arises in the dimensional reduction to four dimensions of five-dimensional Kaluza-Klein theory. We study the classical Lorentzian solutions for the model and find that they exhibit exponential or power-law inflation. We show that the Wheeler-DeWitt equation for this model is exactly soluble. Concentrating on the two particular cases of potentials cosh(2-phi) and exp(2-phi), we consider the Euclidean minisuperspace path integral for a propagation amplitude between fixed scale factors and scalar-field configurations. In the gauge N = 0 (where N is the rescaled lapse function), the path integral reduces, after some essentially trivial functional integrations, to a single nontrivial ordinary integral over N. Because the Euclidean action is unbounded from below, N must be integrated along a complex contour for convergence. We find all possible complex contours which lead to solutions of the Wheeler-DeWitt equation or Green's functions of the Wheeler-DeWitt operator, and we give an approximate evaluation of the integral along these contours, using the method of steepest descents. The steepest-descent contours may be dominated by saddle points corresponding to exact solutions to the full Einstein-scalar equations which may be real Euclidean, real Lorentzian, or complex. We elucidate the conditions under which each of these different types of solution arise. For the exp(2-phi) potential, we evaluate the path integral exactly. Although we cannot evaluate the path integral in closed form for the cosh(2-phi) potential, we show that for particular N contours the amplitude may be written as a given superposition of exact solutions to the Wheeler-DeWitt equation. By choosing certain initial data for the path-integral amplitude we obtain the amplitude specified by the "no-boundary" proposal of Hartle and Hawking. We discuss the nature of the geometries corresponding to the saddle points of the no-boundary amplitude. We identify the set of classical solutions this proposal picks out in the classical limit.
Description
© 1991 The American Physical Society. We are very grateful to Jorma Louko for many useful conversations. L.G. and G.M. would like to thank Massachusetts Institute of Technology (MIT), where most of this work was done, for warm hospitality during their visit. L.G. and G.M. were supported by the Spanish Ministerio de Educacion y Ciencia. J.J.H. was supported in part by funds provided by the U.S. Department of Energy (DOE) under Contract No. DE-aCO2-76ER03069.
Unesco subjects
Keywords
Citation
1.For some introductory/review material on quantum cosmology, see, for example, J. B. Hartle, in High Energy Physics 1985, proceedings of the Yale Summer School, New Haven, Connecticut, 1985, edited by M. J. Bowick and F. Gursey (World Scientific, Singapore, 1985); in Gravitation in Astrophysics (Cargese, 1986), proceedings of the NATO dvanced Study Institute, Cargese, France, 1986, edited by B. Carter and J. Hartle, NATO ASI Series B: Physics, Vol. 156 (Plenum, New York, 1987);J. J. Halliwell, in Proceedings of the Seventh Jerusalem Winter School for Theoretical Physics: Quantum Cosmology and Baby Universes, edited by S. Coleman, J. B. Hartle, and T. Piran (unpublished); in Proceedings of the Trieste Summer School on High Energy Physics and Cosmology, edited by Q. Shafi (unpublished); Institute for Theoretical Physics Report No. NSF-ITP-88-131 (1988) (unpublished); S. W. Hawking, in Relativity Groups and Topology II, proceedings of the Les Houches Summer School, Les Houches, France, 1983, edited by B. DeWitt and R. Stora, Les Houches Summer School Proceedings, Vol. 40 (North-Holland, Amsterdam, 1984). For an extensive bibliography, see J.J. Halliwell, Int. J. Mod. Phys. A 5, 2473 (1990). 2. J. B. Hartle, in Proceedings of the Seventh Jerusalem Winter School for Theoretical Physics: Quantum Cosmology and Baby Universes (Ref. 1). 3. G. W. Gibbons, S. W. Hawking, and M. J. Perry, Nucl. Phys. 8138, 141 (1978). 4. J. B. Hartle and K. Schleich, in Quantum Field Theory and Quantum Statistics, Essays in Honor of the Sixtieth Birthday of E. S. Fradkin, edited by I. A. Batalin, G. A. Vilkovisky, and C. J. Isham (Hilger, Bristol, 1987); K. Schleich, Phys. Rev. D 36, 2342 (1987). 5. J.J. Halliwell and J.B. Hartle, Phys. Rev. D 41, 1815 (1990). 6. J.J. Halliwell and J. Louko, Phys. Rev. D 39, 2206 (1989) 7. J.J. Halliwell and J. Louko, Phys. Rev. D 40, 1868 (1989). 8. J.J. Halliwell and J. Louko, Phys. Rev. D 42, 3997 (1990). 9. J. B.Hartle, J. Math. Phys. 30, 452 (1989). 10. J.J. Halliwell and R. Myers, Phys. Rev. D 40, 4011 (1989). 11. J.J. Halliwell, Phys. Rev. D 38, 2468 (1988). 12. J.J. Halliwell and J.B. Hartle, Phys. Rev. D 43, 1170 (1991). 13. A. O. Barvinsky, Phys. Lett. B 175, 401 (1986); A. O. Barvinsky and V. N. Ponomariov, Phys. Lett. 1678, 289 (1986); C. Teitelboim, ibid. 968, 77 (1980); Phys. Rev. D 25, 3159 (1982); 28, 297 (1983). 14. J. B.Hartle, Phys. Rev. D 37, 2818 (1988); 38, 2985 (1988). 15. S. W. Hawking, in Astrophysical Cosmology, edited by H. A. Bruck, G. V. Coyne, and M. S. Longair (Pontifica Academia Scientarium, Vatican City, 1982); J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983). 16. S.W. Hawking, Nucl. Phys. 8239, 257 (1984). 17. A. Linde, Zh. Eksp. Teor. Fiz. 87, 369 (1984) [Sov. Phys. JETP 60, 211 (1984)]; Nuovo Cimento 39, 401 (1984); Rep. Prog. Phys. 47, 925 (1984). 18. A. Vilenkin, Phys. Rev. D 30, 509 (1984); 33, 3560 (1986); 37, 888 (1988). 19. The literature abounds with minisuperspace models. Just a few of them are P. Amsterdamski, Phys. Rev. D 31, 3073 (1985); M. I. Beciu, Nuovo Cimento B 90, 223 (1985);R. Bergamini and G. Giampieri, Phys. Rev. D 40, 3960 (1989);S. del Campo and A. Vilenkin, Phys. Lett. B 224, 45 (1989); U. Carow-Watamura, T. Inami, and S. Watamura, Class. Quantum Grav. 4, 23 (1987); G. Esposito and G. Platania, ibid. 5, 937 (1988);L. Z. Fang and M. Li, Phys. Lett. 1698, 28 (1986); P. F. Gonzalez-Diaz, ibid. 1598, 19 (1985); J. J. Halliwell, Nucl. Phys. 8286, 729 (1987); S. W. Hawking and J. C. Luttrell, Phys. Lett. 1438, 83 (1984);X. M. Hu and Z. C. Wu, ibid. 182, 305 (1986); S. R. Lonsdale and I. G. Moss, ibid. 189, 12 (1987); J. Louko and T. Vachaspati, ibid. 223, 21 (1989); Y. Okada and M. Yoshimura, Phys. Rev. D 33, 2164 (1986); S. Poletti, Class. Quantum Cirav. 6, 1943 (1989);M. D. Pollock, Nucl. Phys. 8324, 187 (1989); Y. G. Shen, Chin. Phys. L6, 43 (1989);A. Vilenkin, Phys. Rev. D 30, 509 (1984); Z. C. Wu, Phys. Lett. 1468, 307 (1984); Z. Zhuk, Class. Quantum Grav. 5, 1357 (1988). A guide to the literature including an extensive list of minisuperspace models may be found in J. J. Halliwell, in Proceedings of the Seventh Jerusalem Winter School for Theoretical Physics: Quantum Cosmology and Baby Universes (Ref. 1); in Proceedings of the Trieste Summer School on High Energy Physics and Cosmology (Ref. 1). 20. C. W. Misner, in Relativity, edited by M. Carmeli, S. Fickler, and L. Witten (Plenum, New York, 1970). 21. I. G. Moss, Ann. Inst. Henri Poincare 49, 341 (1988). 22. C. Kiefer, Zurich Report No. 90-0238, 1990 (unpublished). 23. B. Berger, Phys. Rev. D 32, 2485 (1985); B. Berger and C. Vogeli, ibid. 32, 2477 (1985). 24. J. J. Halliwell, Phys. Lett. B 185, 341 (1987). 25. F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316(1985). 26. B.Ratra, Phys. Rev. D 40, 3939 (1989). 27. R. A. Matzner and A. Mezzacappa, Found. Phys. 16, 227 (1986). 28. Some papers dealing with the issues of quantum mechanics on restricted ranges are, for example, M. Carreau, E. Farhi and S. Gutmann, Phys. Rev. D 42, 1194 (1990);E. Farhi and S. Gutmann, Int. J. Mod. Phys. A 5, 3029 (1990);J. Klauder, in Relativity (Ref. 20); Phys. Rev. D 2, 272 (1970); N. Linden and M. Perry, Department of Applied Mathematics and Theoretical Physics report, 1990 (unpublished). 29. Handbook ofMathematical Functions, Natl. Bur. Stand. Appl. Math. Ser. No. 55, edited by M. Abramowitz and I. A. Stegun (U.S. GPO, Washington, DC, 1965). 30. K. V. Kuchar" and M. P. Ryan, Phys. Rev. D 40, 3982 (1989). 31. G. W. Gibbons and J.B.Hartle, Phys. Rev. D 42, 2458 (1990). 32. J. Louko, Phys. Lett. B 202, 201 (1988); Ann. Phys. (N.Y.) isi, 318 (1988). 33. J. Fort and A. Vilenkin (private communication). 34. The peaking about classical trajectories is discussed in, for example, A. Anderson, Phys. Rev. D 42, 585 (1990); S. Habib, ibid. 42, 2566 (1990); J. J. Halliwell, ibid. 36, 3626 (1987); Phys. Lett. B 196, 444 (1987); T. P. Singh and T. Padmanabhan, Ann. Phys. (N.Y.) 196, 296 (1989); Class. Quantum Grav. 7, 411 (1990). A further requirement for classical behavior is decoherence of alternative histories. See, for example, M. Gell-Mann and J. B. Hartle, in Proceedings of the Third International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, edited by S. Kobayashi (Japan Physical Society, Japan, 1990); C. Kiefer, Class. Quantum Grav. 4, 1369 (1987); M. Morikawa, Phys. Rev. D 40, 4023 (1989); T. Padmanabhan, ibid. 39, 2924 (1989). See also Ref. 35 below. 35. J.J. Halliwell, Phys. Rev. D 39, 2912 (1989)
Collections