Publication:
SU(2)-invariant depolarization of quantum states of light

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-11-18
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We develop an SU(2)-invariant approach to the depolarization of quantum systems as the effect of random unitary SU(2) transformations. From it we derive an SU(2)-invariant Markovian master equation. This is applied to several quantum states examining whether nonclassical states are more sensible to depolarization than the classical ones. Furthermore, we show that this depolarization model provides a nontrivial generalization of depolarization channels to states of arbitrary dimension.
Description
©2013 American Physical Society. We acknowledge financial support from Spanish MINECO Grants No. FIS2009-10061, No. FIS2012-33152, and No. FIS2012-35583; CAM research consortium QUITEMAD S2009-ESP-1594; and UCM-BS Grant No. GICC-910758.
Keywords
Citation
[1] Ch. Brosseau, Fundamentals of Polarized Light: A. Statistical Optics Approach (John Wiley & Sons, New York, 1998); J. J. Gil, Eur. Phys. J. Appl. Phys. 40, 1 (2007). [2] D.Goldstein, Polarized Light (Marcel Dekker, NewYork, 2003). [3] G. S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, England, 2013). [4]M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997). [5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000). [6] A. Luis and L. L. Sánchez-Soto, Quantum Semiclass. Opt. 7, 153 (1995). [7] R. V. Ramos, J. Mod. Opt. 52, 2093 (2005); J. C. do Nascimento and R. V. Ramos, Microwave Opt. Tech. Lett. 47, 497 (2005); A. B. Klimov and L. L. Sánchez-Soto, Phys. Scr. T 140, 014009 (2010). [8] J. Schwinger, Quantum Theory of Angular Momentum (Academic, New York, 1965). [9] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972). [10] A. Luis, Phys. Rev. A 66, 013806 (2002). [11] R. Delbourgo, J. Phys. A 10, 1837 (1977). [12] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033 (1986); M. Hillery and L.Mlodinow, ibid. 48, 1548 (1993); M. Kitagawa andM. Ueda, ibid. 47, 5138 (1993); D. J.Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, ibid. 50, 67 (1994); J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, J. Mod. Opt. 47, 2599 (2000); N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and Ch. Silberhorn, Phys. Rev. A 65, 052306 (2002); N. Korolkova and R. Loudon, ibid. 71, 032343 (2005); A. Luis and N. Korolkova, ibid. 74, 043817 (2006). [13] C. Brif and A. Mann, Phys. Rev. A 54, 4505 (1996). [14] A map E is said to be unital if E(1) = 1. [15] P. Réfrégier, Opt. Lett. 33, 636 (2008). [16] P. Réfrégier and A. Luis, J. Opt. Soc. Am. A 25, 2749 (2008). [17] G. S. Agarwal, Lett. Nuov. Cim. 1, 53 (1971); H. Prakash and N. Chandra, Phys. Rev. A 4, 796 (1971); G. S. Agarwal, J. Lehner, and H. Paul, Opt. Commun. 129, 369 (1996); J. Lehner, U. Leonhardt, and H. Paul, Phys. Rev. A 53, 2727 (1996); J. Lehner, H. Paul, and G. S. Agarwal, Opt. Commun. 139, 262 (1997); J. Söderholm, G. Björk, and A. Trifonov, Opt. Spectrosc. 91, 532 (2001); arXiv:quant-ph/0007099; J. Ellis and A. Dogariu, J. Opt. Soc. Am. A 21, 988 (2004); 22, 491 (2005). [18] A. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction (Springer, Heidelberg, Germany, 2011). [19] C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004). [20] G. Lindblad, Commun. Math. Phys. 48, 119 (1976); V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976); M. Verri and V. Gorini, ibid. 19, 1803 (1978). [21] A. Barchielli, L. Lanz, and G. M. Prosperi, Nuov. Cim. B 72, 79 (1982); Found. Phys. 13, 779 (1983); C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543 (1987). [22] G. S. Agarwal, Phys. Rev. A 24, 2889 (1981). [23] A. Luis, Phys. Rev. A 75, 053806 (2007). [24] A. Frigerio, Comm. Math. Phys. 63, 269 (1978); H. Spohn, Rev. Mod. Phys. 52, 569 (1980). [25] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990); J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996); S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997); A. Luis, Phys. Rev. A 64, 054102 (2001); 65, 034102 (2002); Ph. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, Nature (London) 429, 158 (2004); M.W. Mitchell, J. S. Lundeen, and A. M. Steinberg, ibid. 429, 161 (2004). [26] A. Rivas and A. Luis, Phys. Rev. A 77, 022105 (2008); 78, 043814 (2008). [27] A. B. Klimov, J. L. Romero, and L. L. Sánchez-Soto, J. Opt. Soc. Am. B 23, 126 (2006); A. B. Klimov, J. L. Romero, L. L. Sánchez-Soto, A. Messina, and A. Napoli, Phys. Rev. A 77, 033853 (2008). [28] For SU(2) squeezed coherent states with a finite amount of squeezing the decay of the polarization lies between the blue and green lines in Fig. 1. Since for infinite squeezing s vanishes, so does the component e^−16νt in D(t ) because of the arguments given in Sec. IV. A.
Collections