Publication:
Classical Zeno dynamics in the light emitted by an extended, partially coherent source

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-11-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We provide theoretical and experimental evidence of a classical-optics realization of quantum Zeno dynamics. In contrast to other approaches, the classical implementation is extremely simple and adaptable. Frequently monitoring the transverse spreading of the light emitted by an extended source results in a nontrivial dynamics where spreading and all other transverse effects associated with light propagation as the increase of spatial coherence tends to be inhibited. This is fully equivalent to a quantum Zeno dynamics where monitoring whether a quantum free particle at rest remains in a spatial interval causes inhibition of the quantum-state evolution, including the degree of purity.
Description
©2013 American Physical Society. M. A. P. acknowledges support from Projects No. MTM2012-39101-C02-01 and No. FIS2010-22082 of the Ministerio de Economia y Competitividad of Spain. A. L. acknowledges support from Projects No. FIS2012-35583 of the Spanish Ministerio de Economia y Competitividad and QUITEMAD No. S2009-ESP-1594 of the Consejeria de Educacion de la Comunidad de Madrid. I. G. acknowledges support from Project No. FIS2010-22082. We thank Dr. H. Canabal and Dr. F. Carreno for technical assistance.
Keywords
Citation
[1] M. V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996); M. V. Berry, J. Phys. A 29, 6617 (1996); P. Facchi and S. Pascazio, Phys. Rev. Lett. 89, 080401 (2002); J. Phys. A: Math. Theor. 41, 493001 (2008). [2] J.M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, Phys. Rev. A 86, 032120 (2012); F. Schaefer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S. Cataliotti, F. Caruso, and A. Smerzi, QIPC 2013: Quantum Information Processing and Communication (unpublished). [3] M. Kitano, Opt. Commun. 141, 39 (1997); K. Yamane, M. Ito, andM. Kitano, ibid. 192, 299 (2001); A. Peres, Am. J. Phys. 48, 931 (1980); P. Kwiat,H.Weinfurter, T. Herzog, A. Zeilinger, and M. Kasevich, Ann. N. Y. Acad. Sci. 755, 383 (1995); S. Longhi, Phys. Rev. Lett. 97, 110402 (2006); P. Biagioni, G. Della Valle, M. Ornigotti, M. Finazzi, L. Duo, P. Laporta, and S. Longhi, Opt. Express 16, 3762 (2008). [4] M. De, J. W. Y. Lit, and R. Tremblay, Appl. Opt. 7, 483 (1968). [5] J. W. Y. Lit and R. Tremblay, J. Opt. Soc. Am. 59, 559 (1969); Opt. Commun. 1, 280 (1970). [6] M. A. Porras, A. Luis, I. Gonzalo, and A. S. Sanz, Phys. Rev. A 84, 052109 (2011). [7] E. Wolf, Phys. Lett. 3, 166 (1963). [8] A. Luis, I. Gonzalo, and M. A. Porras, Phys. Rev. A 87, 064102 (2013). [9] M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University Press, Cambridge, UK, 1999). [10] M. Moshinsky, Phys. Rev. 88, 625 (1952); E. Torrontegui, J. Muñoz, Y. Ban, and J. G. Muga, Phys. Rev. A 83, 043608 (2011). [11] J. Tervo, T. Setälä, and A. T. Friberg, J. Opt. Soc. Am. A 21, 2205 (2004). [12] W. Streifer, J. Opt. Soc. Am. 56, 1481 (1966). [13] A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961). [14] L. Ronchi, Appl. Opt. 9, 733 (1970).
Collections