Publication:
Reconciling quantum trajectories and stationary quantum distributions in single-photon polarization states

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-06-27
Authors
Sanz, Ángel S.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The question of the representation of quantum stationary partially polarized waves as random superpositions of different polarization ellipses is addressed. To this end, the Bohmian formulation of quantum mechanics is considered and extended to quantum optical polarization. As is shown, this approach properly combines definite time-evolving trajectories with rigorous stationary quantum distributions via the topology displayed by the associated phase field.
Description
©2013 American Physical Society. Support from the Ministerio de Economia y Competitividad (Spain) under Projects No. FIS2012-35583 (A.L.), No. FIS2010-22082 (A.S.), and No. FIS2011-29596-C02-01 (A.S.), and a "Ramon y Cajal" Grant (A.S.); from the Consejeria de Educacion de la Comunidad de Madrid under Project No. QUITEMAD S2009-ESP-1594 (A.L.); and from the COST Action MP1006 "Fundamental Problems in Quantum Physics" (A.S.) is acknowledged. A S. also thanks the University College London for its kind hospitality.
Keywords
Citation
[1] M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University Press, Cambridge, England, 1999); Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998). [2] J. Schwinger, Quantum Theory of Angular Momentum (Academic Press, New York, 1965). [3] J. Pollet, O.Méplan, and C.Gignoux, J. Phys.A28, 7287 (1995). [4] A. Luis, Phys. Rev. A 66, 013806 (2002). [5] J. Liñares, M. C. Nistal, D. Barral, and V. Moreno, Eur. J. Phys. 31, 991 (2010); J. Liñares, D. Barral, M. C. Nistal, and V. Moreno, J. Mod. Opt. 58, 711 (2011). [6] D. Bohm, Phys. Rev. 85, 166 (1952); 85, 180 (1952); P. R. Holland, TheQuantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993); A. S. Sanz and S. Miret-Artes, Am. J. Phys. 80, 525 (2012); X. Oriols and J. Mompart, in Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology, edited by X. Oriols and J. Mompart (Pan Stanford Publishing, Singapore, 2012), Chap. 1, pp. 15–147. [7] A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, Ann. Phys. (NY) 325, 763 (2010). [8] A. S. Sanz, J. Campos-Martínez, and S.Miret-Artés, J. Opt. Soc. Am. A 29, 695 (2012). [9] R. Delbourgo, J. Phys. A 10, 1837 (1977). [10] A. Picozzi, Opt. Lett. 29, 1653 (2004); Ph. Réfrégier, ibid. 30, 1090 (2005); A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm, and G. Björk, Phys. Rev. A 72, 033813 (2005); Ph. Réfrégier and F. Goudail, J. Opt. Soc. Am A 23, 671 (2006); L. L. Sánchez-Soto, J. Söderholm, E. C. Yustas, A. B. Klimov, and G. Björk, J. Phys.: Conf. Ser. 36, 177 (2006); I. Ghiu, G. Björk, P. Marian, and T. A. Marian, Phys. Rev. A 82, 023803 (2010). [11] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972). [12] O. Giraud, P. Braun, and D. Braun, Phys. Rev. A 78, 042112 (2008). [13] A. S. Sanz and S. Miret-Artes, Chem. Phys. Lett. 445, 350 (2007). [14] A. S. Sanz and S. Miret-Artes, J. Phys. A 41, 435303 (2008). [15] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011). [16] Y. Aharonov and L. Vaidman, Phys. Rev. A 41, 11 (1990). [17] B. Hiley, J. Phys.: Conf. Ser. 361, 012014 (2012).
Collections