Publication:
Chemical nonequilibrium for interacting bosons: applications to the pion gas

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-09
Authors
Fernández Fraile, Daniel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider an interacting pion gas in a stage of the system evolution where thermal but not chemical equilibrium has been reached, i.e., for temperatures between thermal and chemical freeze-out T(ther) < T < T(chem) reached in relativistic heavy-ion collisions. Approximate particle number conservation is implemented by a nonvanishing pion number chemical potential mu(pi) within a diagrammatic thermal field-theory approach, valid in principle for any bosonic field theory in this regime. The resulting Feynman rules are derived here and applied within the context of chiral perturbation theory to discuss thermodynamical quantities of interest for the pion gas such as the free energy, the quark condensate, and thermal self-energy. In particular, we derive the mu(pi) not equal 0 generalization of Luscher and Gell-Mann-Oakes-Renner-type relations. We pay special attention to the comparison with the conventional kinetic theory approach in the dilute regime, which allows for a check of consistency of our approach. Several phenomenological applications are discussed, concerning chiral symmetry restoration, freeze-out conditions, and Bose-Einstein pion condensation.
Description
© 2009 The American Physical Society. We acknowledge financial support from the Spanish research Projects No. FPA2007-29115-E, No. PR34- 1856-BSCH, No. CCG07-UCM/ESP-2628, No. FPA2008- 00592, No. FIS2008-01323, and from the FPI programme (No. BES-2005-6726).
Unesco subjects
Keywords
Citation
[1] M. Kataja and P. V. Ruuskanen, Phys. Lett. B 243, 181 (1990). [2] H. Bebie, P. Gerber, J. L. Goity, and H. Leutwyler, Nucl. Phys. B378, 95 (1992). [3] C. M. Hung and E. V. Shuryak, Phys. Rev. C 57, 1891 (1998). [4] P. Braun-Munzinger, K. Redlich, and J. Stachel, in Quark Gluon Plasma 3, edited by R. C. Hwa and Xin-Nian Wang (World Scientific Publishing, Singapore, 2004), pp. 491– 599. [5] P. F. Kolb and R. Rapp, Phys. Rev. C 67, 044903 (2003). [6] G. Torrieri, S. Jeon, and J. Rafelski, Phys. Rev. C 74, 024901 (2006). [7] J. Letessier and J. Rafelski, Eur. Phys. J. A 35, 221 (2008). [8] C. Song and V. Koch, Phys. Rev. C 55, 3026 (1997). [9] J. L. Goity and H. Leutwyler, Phys. Lett. B 228, 517 (1989). [10] A. Schenk, Phys. Rev. D 47, 5138 (1993). [11] J. L. Goity, Phys. Lett. B 319, 401 (1993). [12] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys. Rep. 227, 321 (1993). [13] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004); A. Dobado, F. J. Llanes- Estrada, and J. M. Torres-Rincon, Phys. Rev. D 79, 014002 (2009). [14] A. Dobado and J. R. Pelaez, Phys. Rev. D 59, 034004 (1998). [15] R. Baier, M. Dirks, and K. Redlich, Phys. Rev. D 55, 4344 (1997). [16] K. c. Chou, Z. b. Su, B. l. Hao, and L. Yu, Phys. Rep. 118, 1 (1985). [17] N. P. Landsman and C. G. van Weert, Phys. Rep. 145, 141 (1987). [18] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 082301 (2001). [19] V. L. Eletsky, J. I. Kapusta, and R. Venugopalan, Phys. Rev. D 48, 4398 (1993). [20] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592 (2001); M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034 (2003). [21] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, England, 2006). [22] C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980). [23] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, New York, 2002), 4th ed.. [24] M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England, 1996). [25] T. Altherr, Phys. Lett. B 341, 325 (1995). [26] A. Niegawa, Phys. Rev. D 40, 1199 (1989). [27] F. Gelis, Phys. Lett. B 455, 205 (1999). [28] R. Kobes, Phys. Rev. D 42, 562 (1990); 43, 1269 (1991). [29] Y. Fujimoto, H. Matsumoto, H. Umezawa, and I. Ojima, Phys. Rev. D 30, 1400 (1984); 31, 1527(E) (1985); H. Matsumoto, Y. Nakano, and H. Umezawa, Phys. Rev. D 31, 1495 (1985). [30] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [31] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). [32] S. Weinberg, Physica A (Amsterdam) 96, 327 (1979). [33] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. Lett. 102, 121601 (2009); Eur. Phys. J. C 62, 37, (2009). [34] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987). [35] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968). [36] D. Toublan, Phys. Rev. D 56, 5629 (1997). [37] M. Luscher, Commun. Math. Phys. 104, 177 (1986). [38] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); 67, 2260 (1991); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); 56, 3057 (1997); A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [39] A. Dobado, A. Gomez Nicola, F. J. Llanes-Estrada, and J. R. Pelaez, Phys. Rev. C 66, 055201 (2002). [40] A. Ayala, P. Amore, and A. Aranda, Phys. Rev. C 66, 045205 (2002); A. Ayala and J. Magnin, Phys. Rev. C 68, 014902 (2003). [41] R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); D. B. Kaplan and A. E. Nelson, Phys. Lett. B 175, 57 (1986). [42] J. Zimanyi, G. I. Fai, and B. Jakobsson, Phys. Rev. Lett. 43, 1705 (1979); C. Greiner, C. Gong, and B. Muller, Phys. Lett. B 316, 226 (1993); R. Lednicky, V. Lyuboshitz, K. Mikhailov, Yu. Sinyukov, A. Stavinsky, and B. Erazmus, Phys. Rev. C 61, 034901 (2000); V. V. Begun and M. I. Gorenstein, Phys. Lett. B 653, 190 (2007). [43] D. Fernández-Fraile and A. Gómez Nicola, Phys. Rev. D 73, 045025 (2006); Int. J. Mod. Phys. E 16, 3010 (2007); Eur. Phys. J. A 31, 848 (2007).
Collections