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We consider an interacting pion gas in a stage of the system evolution where thermal but not chemical

equilibrium has been reached, i.e., for temperatures between thermal and chemical freeze-out Tther <

T < Tchem reached in relativistic heavy-ion collisions. Approximate particle number conservation is

implemented by a nonvanishing pion number chemical potential �� within a diagrammatic thermal field-

theory approach, valid in principle for any bosonic field theory in this regime. The resulting Feynman

rules are derived here and applied within the context of chiral perturbation theory to discuss thermody-

namical quantities of interest for the pion gas such as the free energy, the quark condensate, and thermal

self-energy. In particular, we derive the �� � 0 generalization of Luscher and Gell-Mann–Oakes–

Renner–type relations. We pay special attention to the comparison with the conventional kinetic theory

approach in the dilute regime, which allows for a check of consistency of our approach. Several

phenomenological applications are discussed, concerning chiral symmetry restoration, freeze-out con-

ditions, and Bose-Einstein pion condensation.
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I. INTRODUCTION

One of the ongoing research lines in heavy-ion physics
is the thermal and chemical evolution of the expanding
hadronic gas. Roughly speaking, the accepted picture is
that the evolution of the cooling system reaches chemical
freeze-out before the thermal one, so that when hadrons
fully decouple the chemical potentials associated with
particle number conservation are not zero. The chemical
composition of the gas can be determined experimentally
by looking at the relative abundances of the different
hadron species and their spectra [1–5]. The presence of
such a chemically not-equilibrated phase is more likely to
exist for higher collision energies such as those in the
Relativistic Heavy Ion Collider (RHIC) or LHC than for
Super Proton Synchrotron (SPS) or Alternating Gradient
Synchrotron (AGS) experiments [4]. For the pion
component, different estimates based on local thermal
equilibrium and particle spectra analyses predict �� �
50–100 MeV at a thermal freeze-out temperature Tther �
100–120 MeV, with chemical freeze-out taking place at
about Tchem � 180 MeV [2,3,5–8]. On the other hand, the
plasma is almost electrically neutral, so that it is a good
approximation to keep vanishing charge or isospin chemi-
cal pion chemical potentials.

For low and moderate temperatures, the dominant com-
ponent is the pionic one. In that phase, the mean-free path
of pions is small compared to the system size, so that
local thermal equilibrium prevails [2,9,10]. On the other
hand, the chemical relaxation rate through inelastic
�� ⇆ ���� processes is very small [8,11] due to a

strong phase space suppression. Therefore, in the range
of temperatures Tther < T < Tchem & Tc, with Tc the chiral
restoration critical temperature, the system is in thermal
equilibrium and dominated by elastic collisions so that
�� � 0. In that temperature range, it is valid to use the
theoretical framework of chiral perturbation theory (ChPT)
and it is also reasonable to adopt a dilute gas description,
since the mean particle density is small. In addition, by
neglecting dissipative effects such as viscosities, entropy is
conserved in the evolution.
The system described above, i.e., a pion gas with �� �

0 is the one we will consider here. Clearly, it is an over-
simplified version of the real hadron gas, but we will take it
as a physically relevant working example for our present
analysis. So far, pion number chemical potential effects in
such a system have been incorporated basically in two
ways. One of them is the limit of free particles (where
one has actually exact particle conservation) used for the
evaluation of the partition function, including resonances
explicitly [2,8]. This allows, via entropy conservation re-
quirements, to describe rather accurately the isentropic
dependence ��ðTÞ in the range of temperatures of phe-
nomenological relevance indicated above. The other one is
to use kinetic theory arguments to include the �� � 0
dependence directly in the distribution function. The latter
has been followed for instance in the calculation of the
thermal width [9], in the evaluation of transport coeffi-
cients [12,13], or in the virial approach for low densities
[14]. Finally, it is worth mentioning that there are phe-
nomenological analyses, similar to those in [15] for the
dilepton rate, where the same prescription is followed, i.e.,
replacing the distribution function, but for propagators at
the diagrammatic level, inspired on the nonequilibrium
formulation of thermal field theory [16].
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We are interested in a diagrammatic formulation of this
system, i.e., we will derive the Feynman rules to be used
when approximate particle number conservation is valid.
The Feynman rules of thermal field theory with exact
conserved charges can be obtained straightforwardly [17]
but this is a completely different situation, since particle
number is not exactly conserved in an interacting bosonic
field theory (conserved only in the free case), and therefore
there is not a local number operator to be added to the
Lagrangian in the usual way. This will also be related to the
impossibility to define a proper Matsubara imaginary-time
formalism (ITF). The motivation for our field-theory de-
scription is twofold: first, it will provide a formal proof of
the consistency and validity of the different prescriptions
used in the literature and mentioned in the previous para-
graph. Second, it will allow one to deal in a natural way
with pion interactions when �� � 0, which is particularly
interesting in order to describe corrections to dynamical
quantities such as the thermal pion self-energy, but also to
evaluate the effect of interactions in thermodynamical
observables.

The paper is organized as follows: in the first part we
will describe our formalism, based on holomorphic path
integrals, which naturally leads to the relevant Feynman
rules. Although the results in that part are actually valid for
any real scalar field theory provided one neglects the
contributions of number-changing scattering processes or,
in other words, if the gas is dilute enough, we will be
primarily interested in the pion gas, where chemical non-
equilibrium is actually reached during the expansion. We
explain more clearly this physical motivation in Sec. II,
where we discuss the relevant distribution function to
describe the system. The Feynman rules we derive
(Sec. III) had not been considered before in the interacting
case and, as we will see, they are really meaningful only in
the real-time formalism (RTF) of thermal field theory. The
second part (Sec. IV) deals with the application of our
formalism to the pion gas. Wewill analyze corrections both
in thermodynamical (free energy, entropy, particle number,
and quark condensate) and dynamical (thermal mass and
width) observables, the former being understood as a gen-
eralization of the usual thermodynamical variables during
the chemical nonequilibrium phase. We also compare to
previous works in the literature and we discuss several
phenomenological consequences regarding chiral symme-
try restoration, Bose-Einstein condensation of neutral and
charged pions, as well as thermal and chemical freeze-out.
Appendixes A and B contain detailed results used in the
main text about holomorphic path integrals and thermal
propagators, respectively. In particular, in Appendix B we
discuss some relevant differences between the case of
particle number chemical potential considered here and
the more usual one associated with the electric charge
exact conservation, concerning especially the way in which
Kubo-Martin-Schwinger (KMS) boundary conditions are
broken.

II. PHYSICAL MOTIVATION

As stated in the Introduction, we are interested in de-
scribing the physical system constituted by a pion gas in
expansion, during the time when the number of pions is
approximately conserved. This is the case of the pionic
component of the hadronic gas produced after a relativistic
heavy-ion collision. The pionic component is the dominant
one in the hadron gas around thermal freeze out [1],
although considering additional degrees of freedom in
the gas (kaons, etas, nucleons, and resonances) and the
interactions among them is relevant at temperatures close
to the chiral phase transition. We will not consider those
extra components here, although their inclusion in the
chiral framework, together with the corresponding addi-
tional chemical potentials (strangeness and baryon num-
ber) is a feasible extension of this work. Unlike other
treatments [2], where it was shown that it is a reasonable
approximation to introduce in the partition function all the
states (asymptotic states as well as resonances) up to a
given energy as free degrees of freedom, in our approach
the resonances present in the pion gas, the f0ð600Þ=� and
the �ð770Þ, are generated dynamically by means of unitar-
ization methods so the actual degrees of freedom in the
Lagrangian are only pions. It is however important to
mention that, even when introduced as explicit degrees of
freedom, the processes � ⇆ �� and � ⇆ �� do not
restore chemical equilibrium in the pionic component,
because �� ¼ �� ¼ 2��, the truly relevant particle-

changing process being �� ⇆ ����. When pions and
resonances are in chemical equilibrium with respect to
each other we talk about a relative chemical equilibrium,
since it is possible to choose their chemical potentials to
maintain it, whereas absolute chemical equilibrium is only
possible for �� ¼ 0 [8].
The evolution of the pionic fireball can be divided into

three stages as it cools down according to the correspond-
ing temperature ranges [2]: (I) Tchem � T � Tc, the pion
gas is produced after hadronization from a quark-gluon
plasma phase and it is in full statistical equilibrium (ther-
mal and chemical). (II) Tther � T � Tchem, the mean-free
path of elastic collisions, �el is smaller than the typical size
of the fireball, R� 5–10 fm [18], so that thermal equilib-
rium is maintained, whereas the mean-free path of inelastic
collisions �in is larger than R so the total number of pions
N� � N�0 þ N�þ þ N�� remains approximately con-
stant1 and a finite chemical potential associated to N�

builds up, so that the system is out of chemical equilibrium.
(III) T � Tther, �el is larger than R, and so the pions stop

1For instance, at T ¼ 150 MeV the relaxation time of elastic
�� collision is �el � 2 fm, whereas the relaxation time of the
process �� ⇆ ���� is �in � 200 fm [8], the typical mean
velocities at those temperatures being �v� c. See also our com-
ments in Sec. IVC.
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interacting and their momentum distributions become fro-
zen, so that thermal equilibrium is lost.

We shall analyze phase II of the evolution, where the
total number of pions is approximately conserved (and the
gas remains dilute enough) so that the introduction of a
finite pion chemical potential �� associated to N� is
necessary. The existence of such a chemically not-
equilibrated phase during the fireball space-time evolution
is supported by several phenomenological results. For in-
stance, when analyzing experimental data from the NA44
Collaboration, it was shown in [3] that in order to properly
fit the pion spectrum at low transverse momentum in PbPb
reactions, one needs to introduce a finite chemical potential
of order�� � 60–80 MeV at thermal freeze-out. A similar
conclusion is reached in [5] for RHIC AuAu collisions. In
addition, the analysis of total particle yields and yield
ratios for SPS and RHIC energies are fitted with values
of fugacities compatible with the pionic component being
significatively out of chemical equilibrium [6,7].

Neglecting electromagnetic interactions, the pions are
described by neutral scalar fields. For a neutral boson field
theory, the particle number is conserved only in the free
case. Our aim here is to provide a field-theory description
of the nonequilibrium state corresponding to phase II. In
this respect, it is important to remark that there are funda-
mental differences between total particle number and
charges which are exactly conserved by the dynamics,
such as the net electric charge or baryon number in
QCD. In a pion gas, the total number of pions is expressed

in terms of individual number operators as N̂ ¼
N̂�0 þ N̂�þ þ N̂�� , whereas electric charge, or the third
isospin component [they are equivalent in the pion SUð2Þ
case] is measured by N�þ � N�� [19,20]. The main dif-
ference is of course that charge is exactly conserved in the
second case, which implies several important consequen-
ces: first, from the field-theoretical point of view, in the

charge case there is a local charge operator Q̂ written in
terms of the field and its derivatives, which allows for a
straightforward derivation of the corresponding Feynman

rules, adding the usual �QQ̂ term to the Lagrangian

[17,21]. However, that is not the case for the particle
number, which instead has a natural formulation in terms
of canonical creation and annihilation operators. That is
the main reason why we will develop our holomorphic
representation of the path integral in Sec. III. Second, in
the �� case we are really facing a nonequilibrium descrip-
tion, which is only consistent if �� and T are not indepen-
dent parameters, the function ��ðTÞ parametrizing the
deviations from chemical equilibrium and vanishing at
T ¼ Tchem. This signals the end of phase II, or its beginning
if we think in terms of proper time, as inverse of tempera-
ture evolution in a hydrodynamical description (remember
that in phase II local thermal equilibrium is assumed). The
form of ��ðTÞ has to be fixed by additional physical
assumptions. We will rely here (see Sec. IVB) on the

isentropic condition stating that the ratio of entropy density
to pion density s=n remains constant along the chemical
evolution, which has phenomenological support [2,3].
Finally, we remark that these differences between the
charge �Q � 0 case and the pion number �� � 0 one

translate into a different way in which the KMS boundary
conditions characteristic of equilibrium are broken. We
discuss this issue in detail in Appendix B. Throughout
this work we will take �Q ¼ 0, which corresponds to

an electrically neutral pion gas, which seems to be well
supported by the phenomenological values of the fugac-
ities [7].
Since the system in phase II is in thermal equilibrium

and there is an approximate conserved operator N̂ with
chemical potential�� associated, the appropriate nonequi-
librium partition function is

~Z�ðtÞ � Trfe��ðĤ���N̂Þg; (1)

where quantities with a tilde will refer always to the
nonequilibrium �� � 0 case throughout this paper. By
including source terms we can then derive thermal corre-
lation functions. Note that ~Z� is independent of the posi-

tion in space (we consider an homogeneous system), but it
actually depends on (proper) time t during the gas expan-
sion through temperature �ðtÞ � 1=TðtÞ and the chemical
potential �ðTðtÞÞ, along the lines discussed in the previous
paragraph. The validity of the out-of-(chemical) equilib-
rium distribution function in (1) will be subject to times t <
tII, where tII is the duration of phase II. It is in this
nonequilibrium effectively time-dependent situation that
our results for the partition function and thermodynamical
observables (see Sec. IVA) have to be understood.
For t < tII inelastic processes are scarce at temperatures

Tther � T � Tchem, therefore if at some time t1 the system
is in a state with a well-defined number of particles equal to

N, N̂jnðt1Þi ¼ Njnðt1Þi, then at another time t2 with t2 �
t1 < tII, N̂jnðt2Þi ’ Njnðt2Þi, and thus in Heisenberg’s pic-

ture N̂ðt1Þ ’ N̂ðt2Þ and from Heisenberg’s equation

idN̂ðtÞ=dt ¼ ½N̂ðtÞ; Ĥ� we infer

0 ’ iðN̂ðt2Þ � N̂ðt1ÞÞ ¼
Z t2

t1

½N̂ðtÞ; Ĥ�dt ) ½N̂ðtÞ; Ĥ� ’ 0;

for t1 � t � tII: (2)

In the following section, the condition ½N̂ðtÞ; Ĥ� ’ 0 (valid
for times in phase II) will be used to derive a field-theory
description of the system based on the holomorphic path-
integral representation of the partition function provided
by (1).

III. FORMALISM: CHEMICAL POTENTIALS FOR
NEUTRAL BOSONS

As we mentioned in the Introduction, the operator N̂ has
a nonlocal representation in terms of the field operator
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[22], so that the appropriate representation for this operator
is instead in terms of creation and annihilation operators.
The holomorphic path-integral representation uses these
convenient operators, and its main ideas can be found in
[23]. We will give the essential steps of the derivation for
our system in this section, with more technical aspects
being relegated to Appendix A. As we saw in the previous
section, the generating functional of thermal correlation
functions will be constructed from the non-(chemical)
equilibrium partition function (1). In order to further sim-
plify the discussion, we will consider first a quantum-
mechanical gas of Bose particles and next we will extend
it straightforwardly to the quantum field theory (QFT)
case. Throughout this section and for simplicity we use
the notation � for the chemical potential associated to the
particle number (�� in the pion gas case, which we will
analyze extensively in Sec. IV).

Let us consider then a single-frequency quantum oscil-
lator (free Hamiltonian) coupled to an external force jðtÞ.
The Hamiltonian and number operators are then

Ĥ ¼ 1

2
p̂2 þ 1

2
!2q̂2 � jðtÞq̂ � Ĥ0 � jðtÞq̂

¼ !

2
ðâyâþ ââyÞ � 1ffiffiffiffiffiffiffi

2!
p ðây þ âÞjðtÞ; (3)

N̂ ¼ âyâ; (4)

where q̂ and p̂ are, respectively, the position and the
conjugate momentum operators (whose role will be played
by the field and its conjugate momentum) and the creation
and annihilation operators are defined in the usual way:

â ¼ iffiffiffiffiffiffiffi
2!

p ðp̂� i!q̂Þ; ây ¼ � iffiffiffiffiffiffiffi
2!

p ðp̂þ i!q̂Þ; (5)

satisfying canonical commutation relations ½â; ây� ¼ 1̂.
In the holomorphic representation [23], traces of opera-

tors are evaluated in the space of complex analytic func-
tions of one complex variable z and creation and
annihilation operators act on this space as

â y � z; â �
@

@z
: (6)

We have included in Appendix A some of the technical
details to perform the relevant calculations in this formal-
ism. In particular, the partition function for any Hamil-

tonian Ĥ reads, from (A7),

~Z� ¼
Z dzd�z

2�i
e��zzhzje��ðĤ��N̂Þj�zi: (7)

Now, if the number operator is approximately con-

served, then ½Ĥ; N̂� ’ 0 and Eq. (7) can be recast, by
inserting the identity once, as

~Z� ’
Z dzd�z

2�i
e��zz

Z dz0d�z0

2�i
e��z0z0 hzje��N̂j�z0ihz0je��Ĥj�zi:

(8)

This is the key step of the derivation, since it contains
our main approximation, which is equivalent to consider
only up to two-particle states in the trace (1). Therefore, it
is physically appropriate to describe a dilute regime where
elastic collisions dominate and particle number is approxi-
mately conserved.
Now, the first matrix element in (8) can be calculated

directly, using (A14) with j ¼ 0, tf ¼ ti � i�, and ! ¼
��:

hzje��N̂j�z0i ¼ expðz�z0e��Þ; (9)

so that, using (A4) we arrive at

~Z� ¼
Z dzd�z

2�i
e��zzhze��je��Ĥj�zi: (10)

From this representation of the partition function we
define the corresponding generating functional (in the
quantum mechanics case):

~Z�½j� �
Z dzd�z

2�i
e��zzhze��je��ðĤ�jq̂Þj�zi; (11)

so that correlators of any function of the position operator q̂
(the field operator in the QFT case) can be expressed in
terms of functional derivatives of ~Z�½j� with respect to j at
j ¼ 0 in the usual way.
Wewill now proceed to the evaluation of ~Z�½j�when the

Hamiltonian is the free one plus the source term, i.e., Ĥ ¼
Ĥ0 � jq̂ in (3). Then, as usual, by functional derivation we
will get the generating functional for the interacting case.
We first separate the normal-ordered part as customary, i.e.,

Ĥ0 ¼ !=2þ!âyâ, where the first term is the vacuum
energy. Therefore, we have

~Z 0
�½j� ¼ e��!=2

Z dzd�z

2�i
e��zzU0ðze��; �z;�i�Þ: (12)

The function U is defined in (A10) and for the present
case, its expression is given in (A14) and (A15). For its
evaluation, we have considered, as detailed in Appendix A,
the complex time contour shown in Fig. 1 joining the
points ti and ti � i� with � 2 ½0; ��, which contains the
usual real-time and imaginary-time paths of thermal field
theory and satisfies the usual requirements for the path
integral to be well defined. i.e., Imt is monotonically
decreasing along the contour [17]. The imaginary-time
contour runs in a straight line from ti ¼ 0 down to �i�
and is denoted as C4, while the C1 and C2 are the paths
used in the real-time formulation (see below).
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Now, replacing in (A14) and (A15) z ! ze��, �z0 ! �z,
tf ! ti � i� is equivalent to replace

� ! ~� ¼ �

�
1��

!

�
; (13)

except for the � appearing in the C contour. With this
replacement one can follow the same steps as in [23] for
the evaluation of the remaining integral in (12). Namely,
one goes back to the discretized version of the path integral
(see Appendix A), uses again (A13) with the modified A
matrix, and finally takes again the continuum limit. The
final result is

~Z 0
�½j� ¼ ~Z0

� exp

�
� 1

2

Z
C
dtdt0jðtÞ ~GFðt� t0Þjðt0Þ

�
; (14)

with the free partition function

~Z 0
� ¼ e��!=2

1� e��ð!��Þ ; (15)

and the free propagator:

~GðtÞ ¼ 1

2!
½e�i!jtjð1þ nð!��ÞÞ þ ei!jtjnð!��Þ�;

(16)

where the Bose-Einstein function:

nðxÞ ¼ 1

e�x � 1
; (17)

so that nð!��Þ is the free distribution function at non-
zero � in (B7) for a particle of positive energy. Note that
we must restrict to �<! in order that the previous
expressions for the partition function are well defined
(see also comments in Appendix B). The upper limit would
correspond to Bose-Einstein condensation (see below). In
the above propagator, jt� t0j has to be understood in terms
of the relative position of times t and t0 with the path
routing shown in Fig. 1.

The result (14) for the quantum-mechanical case for
� � 0 is one of our main results. Its importance relies on

the fact that we can now easily construct the generating

functional in the interacting case, say Ĥ ¼ Ĥ0 þ Vðq̂Þwith
V the potential, in the usual way, i.e., by expanding for-
mally in series of V and writing every term in the expan-
sion in terms of functional derivatives of ~Z0

�½j�with respect
to j. From there, the extension to a QFT for a real scalar
field2 with Lagrangian density:

L ¼ 1

2
ð@��Þ2 �m2

2
�2 �V ð�Þ � j� (18)

is given by

~Z�½j� ¼ ~Z0
� exp

�
�i

Z
C
d4xV

�
	

i	jðxÞ
��

� exp

�
� 1

2

Z
C
d4x

Z
C
d4x0jðxÞ ~Gðx� x0Þjðx0Þ

�
;

(19)

where
R
C d

4x � R
C dt

R
d3 ~x.

The generating functional (19) for the interacting case at
� � 0 and the corresponding Feynman rules which we
discuss below constitute central results of this paper and,
to the best of our knowledge, they had not been considered
before. It is valid for any scalar theory, provided one works
in the regimewhere elastic collisions dominate and particle

number is approximately conserved. The propagator ~G
appearing in (19) is the generalization of (16) to the QFT
case when ! ! Ep, the particle energy, and therefore we

will be restricted in the following to� � m. Recall that the

QFT generalization of ~� in (13) is ~�p in (B13). The

explicit expression of the propagator coincides, as it
should, with the free two-point functions (B8)–(B11) de-
rived in Appendix B directly within the canonical formal-
ism at � � 0 for t 2 R. In this sense, one could somehow
expect that the generalization to � � 0 of the generating
functional is the one given in (19), although there was no
rigorous proof available in the literature. We insist that the
usual field-theory derivation for the case of an exactly
conserved charge is not applicable here.
Next, we will discuss the Feynman rules needed for

diagrammatic calculations. The � � 0 case for approxi-
mate particle conservation is essentially a nonequilibrium
situation, as commented on several times before and thus it
presents many subtleties to bear in mind. One of them is the
impossibility of defining properly a Matsubara or
imaginary-time formalism, which is related to the way in
which the KMS conditions are broken. We will separate
this discussion from the real-time case, where a suitable

FIG. 1. Complex time contour including real- and imaginary-
time paths, used in the derivation of the � � 0 Feynman rules,
where � 2 ½0; ��.

2We remark that in the field-theory case, whereas the
Hamiltonian can be expressed as a space integral of a local field
operator, that is not the case for the number operator when
infinite frequencies appear. This is only possible for exactly
conserved currents.
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formulation is possible, at least to the order we are con-
sidering here.

A. Imaginary-time formalism

The ITF corresponds to the choice ti ¼ � ¼ 0 for the
contour in Fig. 1 so that one is left only with purely
imaginary times t ¼ �i� with � 2 ½0; ��. At � ¼ 0, this
formalism is usually best suited to deal with thermody-
namic quantities such as the free energy, while retarded
Green functions can be derived from it by analytic con-
tinuation in the external frequencies [24]. However, the
� � 0 propagator shows a distinctive feature that compli-
cates diagrammatic calculations, generating in some cases
ill-defined results. The origin of the problem is the way in
which the standard equilibrium KMS periodicity condi-
tions are broken. As explained in Appendix B, to which we
refer for notation, in our case (particle number conserva-
tion valid both for neutral and charged bosons) we have, in

the mixed representation of the propagator, ~�Tð�þ
~�p; pÞ ¼ ~�Tð�; pÞ instead of the familiar KMS condition
~�Tð�þ �;pÞ ¼ ~�Tð�; pÞ. This momentum-dependent pe-
riodic condition makes it impossible to define properly a
Matsubara representation in Fourier space, which can only

be done for � 2 ½� ~�p; ~�p�, e.g., Eq. (B20), instead of the

required ½��;�� interval where time differences appear-

ing in propagators are evaluated (note that ~�p < �). As

explained in Appendix B, this departure of the standard
equilibrium KMS condition in the particle number case is
crucially different from that of a chemical potential asso-
ciated with an exact charge conservation, like the electric
charge for charged particles. In the charge case, the depar-
ture of KMS is given by the constant �Q-dependent multi-

plicative factor in (B27) and, as explained in the Appendix,
there is no obstruction to define the Matsubara representa-
tion for � 2 ½��;�� in that case, e.g., Eq. (B28), which
amounts just to a shift in the Matsubara frequencies.

Turning again to the case analyzed in this paper, the
KMS breaking mentioned in the above paragraph may be a
problem for instance in diagrams contributing to the par-
tition function (closed diagrams) whenever there is mo-
mentum exchange (time propagation) inside the diagram,
i.e., more than one interaction vertex, since in that case the
imaginary-time variables running in the internal propaga-
tors lie in the interval ½��;��, while those propagators are
only �p periodic. When there is just one interaction vertex,

time integration factorizes trivially and the answer is pro-
portional to powers of the tadpole-like contribution
~�Tð� ¼ 0; ~x ¼ 0Þ given in Appendix B. That will be the
case for all the contributions to leading order OðT6Þ in the
calculation of the ChPT partition function. The diagrams
that contribute are given in Fig. 2 (see Sec. IVA). However,
consider, for instance, the diagram labeled 8b in Fig. 2,
contributing to the ChPT free-energy density to OðT8Þ.
Taking for simplicity constant vertices, as in the case of

V ¼ ��4=4!, this diagram in the ITF would be propor-
tional to

I ¼
~G2ð0Þ
�

Z d3 ~p

ð2�Þ3
Z �

0
d�0

Z �

0
d�~�Tð�� �0; pÞ

� ~�Tð�0 � �; pÞ; (20)

with ~Gð0Þ ¼ ~�Tð0Þ given in Eqs. (B29)–(B31). Now, as
commented above, we cannot just replace the Fourier

representation for ~�T in (B20) since it is only defined for

the ½� ~�p; ~�p� interval. This obstruction produces addi-

tional unnatural terms. The appearance of those terms can
be seen by using the mixed representation for �T in terms

of ~G> and ~G< given in (B10) and (B11) and performing
explicitly the �, �0 integrals in (20). We get

I¼� ~G2ð0Þ @

@m2
~Gð0Þþ

~Gð0Þ
�

Z d3 ~p

ð2�Þ3
1

8E4
p

�f½1þ ~npðEpÞ�2½e2��� 1�þ ½~npðEpÞ�2½e�2��� 1�g;
(21)

with E2
p ¼ j ~pj2 þm2. The first term above gives the stan-

dard result for � ¼ 0 with the replacement of the distri-
bution function n ! ~n, as one would expect from kinetic
theory arguments, while this property does not hold for the
additional terms. The remaining contributions vanish for
� ¼ 0 but they do not do so in the T ! 0þ limit where
they diverge. This contradicts the natural physical expec-
tation that in the T ! 0þ limit and for �<m, the free
energy should reduce to the vacuum contribution.
A related conflict arises when trying to calculate corre-

lation functions in the ITF. The loss of KMS � periodicity
implies that the dependence on external times is not only
through time differences. In particular, this means that
correlators depend on ti. Consider for instance the
tadpole-like contribution (we omit the spatial dependence

FIG. 2. Feynman diagrams contributing to the partition func-
tion of the pion gas up to and including OðT8Þ. The first row
includes diagrams up to OðT6Þ, while the second and third rows
are the OðT8Þ contributions. The dots denote interaction vertices
coming from L2, while those vertices coming from higher-order
Lagrangians are indicated by a square box. The notation is the
same as in [31].
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for simplicity):Z itiþ�

iti

d�~�Tð�1 � �Þ~�Tð�� �2Þ

¼
Z ~Tþ�

~T
d�~�Tð�1 � �2 � �Þ~�Tð�Þ; (22)

where ~T ¼ iti � �2. Now, if we make
R ~Tþ�

~T
¼R�

0 �
R ~T
0 þ

R ~Tþ�
� , the change of variable � ! �þ � in

the third integral does not cancel the second one due to

the loss of � periodicity of ~�T . Therefore, the result does
not depend only on �1 � �2 but on ~T, i.e., depends on �1
and �2 independently and, as a consequence, the depen-
dence on ti does not vanish.

As we will see in Secs. IVA and IVC, terms of the type
shown above appear in the self-energy to leading order and
in the partition function at order OðT8Þ. In the latter case,
our approximation reaches its validity limit, since particle-
changing processes start playing an important role.
However, precisely for that reason, at the temperatures
where the OðT8Þ needs to be included we may consider
in practice � � T, m for these contributions. Recall that,
in fact, the conflictive terms in (21) areOð�=TÞ so that we
will be introducing only small corrections by neglecting
them. The presence of those unnatural terms in the ITF
may also be understood if we note that we are facing a
nonequilibrium situation, where the ITF is not appropriate
and which must be formulated using a contour including
real times [16,25]. We will indeed see next that one can
define a suitable RTF so that these problems are not
present, at least to the order we consider here, and one
can calculate properly not only thermal correlators but also
vacuum diagrams contributing to the free energy.

B. Real-time formalism

We consider now the full contour in Fig. 1 and, follow-

ing the standard notation, we denote by ~Dij ¼ ~Gðti � tjÞ
with ti 2 Ci, tj 2 Cj. We then have for theC1;2 parts of the

contour (we omit the spatial dependence for simplicity):

~D11ðt� t0Þ ¼ ~G>ðt� t0Þ
ðt� t0Þ þ ~G<ðt� t0Þ
ðt0 � tÞ;
~D22ðt� t0Þ ¼ ~G<ðt� t0Þ
ðt� t0Þ þ ~G>ðt� t0Þ
ðt0 � tÞ;
~D12ðt� t0Þ ¼ ~G<ðt� t0 þ i�Þ ¼ ~D21ðt0 � tÞ; (23)

where t, t0 2 R and ~G>, ~G< given in (B10) and (B11) and
so on for the remaining components.

In order to formulate properly the RTF at� � 0 we take
first, as customary, ti ! �1. This is necessary if we want
to calculate Green functions with arbitrary real-time argu-
ments. In principle, this choice implies also that, imposing
vanishing asymptotic conditions for the j currents and for
the spectral function, which hold also in our case, the

generating functional for V ¼ 0 can be factorized as [17]

~ZV¼0
�;C ½j� ¼ N ~ZV¼0

�;C12
½j�~ZV¼0

�;C34
½j�; (24)

so that one could calculate real-time correlation functions
without worrying about the imaginary-leg contributions.
However, as it was pointed out in [26,27], there are
imaginary-time contributions that still survive in particular
diagrams, for instance self-energy insertions, which indeed
we will calculate here. Nevertheless, there is a standard
rule for collecting all the relevant contributions but using
only the propagators in C1;2, the so-called jp0j prescription
[24,26,27]. This prescription amounts to use in Fourier
space nðjp0jÞ instead of the seemingly equivalent nðEpÞ
when multiplied by the on-shell 	 function, as in (B19).
For instance, with this prescription one obtains that a
simple constant tadpole-like insertion in the self-energy
such as the diagram shown in Fig. 3(a) with a constant
vertex, amounts to a redefinition of the mass, as expected.
It also guarantees that there are no ill-defined contribu-
tions, such as products of 	 distributions at the same point
which in principle could appear when multiplying the RTF
propagators. What we will show here is that for � � 0
there is also a natural prescription which works, now in
terms of n ! ~npðp0Þ, leading to the same properties at the

order considered here. However, it must be pointed out that
to higher orders, there may be additional ill-defined terms
arising from a nonequilibrium distribution [25]. Our RTF
avoids the main obstruction that we faced in the ITF, since
the length � of the imaginary leg disappears from the
integration limits in momentum space, whose Fourier rep-
resentation is well defined now. Moreover, we also choose
� ! 0þ. Therefore, for Green functions with real-time
arguments for which we neglect (with the above prescrip-
tion) the C3;4 parts, we end up with a Keldysh-like contour

characteristic of nonequilibrium thermal field theory [16].
With this procedure we will see that an additional property
holds: most results can be written as functionals of ~n,
which encodes all the T, � dependence. This is also an
expected property from kinetic theory arguments, at least
for the leading-order corrections in ~n (dilute gas regime).
This allows one then to calculate properly any real-time

correlation function directly, i.e., without appealing to the
analytic continuation from the ITF, which is cumbersome
for � � 0. In addition, as we will see below, one can also

FIG. 3. Diagrams contributing to leading order to the real (a)
and imaginary (b) parts of the self-energy.
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obtain information about the free-energy density without
using the ITF. Let us then write the propagators (23) in
momentum space for our choice of contour [note that the
~D11 component corresponds to the free propagator ~G in
(B19)]:

~D11ðp0; pÞ ¼ i

p2
0 � E2

p þ i�
þ 2�	ðp2

0 � E2
pÞnðjp0j ��Þ;

~D22ðp0; pÞ ¼ �i

p2
0 � E2

p þ i�
þ 2�	ðp2

0 � E2
pÞnðjp0j ��Þ;

~D12ðp0; pÞ ¼ 2�	ðp2
0 � E2

pÞ½
ð�p0Þ þ nðjp0j ��Þ�;
~D21ðp0; pÞ ¼ 2�	ðp2

0 � E2
pÞ½
ðp0Þ þ nðjp0j ��Þ�: (25)

In the above propagators, we have chosen, as discussed
above, the jp0j prescription ensuring that the distribution
function does not depend explicitly on Ep, as in the � ¼ 0

case. We will see below that this yields the same expected
properties as for � ¼ 0. It can also be readily checked that
our � � 0 RTF propagators above coincide with those
given in [15], obtained assuming a direct replacement of
the distribution function by the� � 0 nonequilibrium one.
In fact, the free propagators (25) can be readily recast into
the general nonequilibrium Keldysh form, given for in-
stance in [16,25] by taking for the nonequilibrium distri-
bution function our ~npðk0Þ given in (B12) and (B13),3

which satisfies the property (B14), as required for general
nonequilibrium derivations [25].

To provide a particularly relevant example of our pre-
vious statements, let us consider the tadpole-like correction
to the self-energy given by the diagram in Fig. 3(a) with a
constant vertex (the generalization to derivative vertices
appearing in ChPT calculations will be straightforward).
The external leg is fixed to be of ‘‘type 1,’’ since we are
calculating the two-point function with real arguments, i.e.,
the first-order correction to D11. Then, if we consider only
the C1;2 contributions, this diagram gives in position space

Fðx� yÞ ¼ i
X
j¼1;2

Z
Cj

~D1jðx� zÞ ~Djjð0Þ ~Dj1ðz� yÞ: (26)

Note that correlators depend only on space and time
differences in the RTF, so that the problems discussed in
the previous section, related to the ITF version of the
tadpole in Eq. (22), are not present now.

Now, we take into account that ~D11ð0Þ ¼ ~D22ð0Þ ¼ ~Gð0Þ
in (B29)–(B31). Then, the Fourier transform of F is

Fðp0; pÞ ¼ i ~Gð0Þ½ ~D2
11ðp0; pÞ � ~D12ðp0; pÞ ~D21ðp0; pÞ�:

(27)

We replace in the above equation the propagators in (25)

and use 	ðxÞ
xþi0þ ¼ � 	0ðxÞ

2 � i�	2ðxÞ, where as customary we

keep the regulator in the definition of 	ðxÞ ¼ i
2� ð 1

xþi0þ �
1

x�i0þÞ. Thus, we can write

Fðp0; pÞ ¼ i ~Gð0Þ
��

i

p2
0 � E2

p þ i0þ

�
2

� 2�inðjp0j ��Þ	0ðp2
0 � E2

pÞ
�

¼ � ~Gð0Þ @

@m2
~D11ðp0; pÞ: (28)

Note that it is in the last step in the previous equation
where it is crucial to use the jp0j prescription chosen above
since nðjp0j ��Þ is independent of m2. Therefore, the
result (28) implies that the only modification in the ~D11

propagator is m2 ! m2 � ~Gð0Þ, which is the expected
result of mass renormalization which in addition is ob-
tained from the � ¼ 0 case by replacing n ! ~n in the
(finite) thermal correction to the tadpole diagram given
by the function ~g1ðm; T;�Þ in (B31). Note that to this order
and with this prescription we have been able to get rid of
the ill-defined 	2 terms. However, this prescription might
not be enough when higher orders are included, since it has
been shown in [25] for a ��4 theory that additional non-
equilibrium ill-defined terms arise, which should be prop-
erly regulated with a nonzero particle width. At the order
corresponding to our previous result (28) we coincide with
[25]. We will comment more about this issue in Sec. IVC.
Two more important remarks are in order. The first one

is that the spectral properties of the interacting theory are
really defined from retarded Green functions, not from
time-ordered ones. From the ITF, retarded correlators are
defined directly by analytic continuation. However, we
have seen that this is not a well-defined procedure for � �
0. The solution of the problem of finding retarded Green
functions from the RTF time-ordered product was given in
[28]. In that work, a set of rules (the so-called circling
rules) were provided in order to define a function that has
the required causal retarded properties, namely, it satisfies
that one of the outgoing lines of the corresponding diagram
has the largest time component. It was then shown in
several examples that this function coincides with the
analytic continuation of the ITF correlator. Now, it can
be checked that the same properties of the free propagators
used in [28] for the derivation of the circling rules hold for
our ~Dij propagators and therefore the same rules lead to the

RTF retarded function at � � 0. The application of those
rules is trivial for the tadpole case discussed above, since
there is only one vertex. However, they will be of use for
the case of higher-order contributions to the self-energy
which we will consider below, like the thermal width
arising from the diagram in Fig. 3(b).
The second remark has to do with the calculation of

thermodynamic quantities within the RTF, i.e., the partition
function or the free-energy density. In principle, due to the
factorization of the imaginary-leg commented on above,

3The convention in [25] is such that the D12 and D21 compo-
nents are reversed with respect to ours.
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the contribution to vacuum graphs when summing over
fields of types 1 and 2 vanishes identically. However, it was
shown in [29] that fixing one of the vertices of a vacuum
diagram to be ‘‘external’’ of type 1 and summing over the
remaining internal vertices with an overall � factor repro-
duces the free-energy result and for � ¼ 0 coincides with
the ITF. The functional arguments used in those papers are
also applicable to our � � 0 case and, in fact, the direct
use of that prescription leads to the expected answers. Let
us show this for the case of theOðT8Þ diagram 8b in Fig. 2,
analyzed in Sec. III A in the ITF. Applying the previous
prescription and with constant vertices, we get the result
that this diagram is now proportional to

i ~G2ð0Þ X
j¼1;2

Z
Cj

~D1jðx� zÞ ~Dj1ðz� xÞ ¼ ~Gð0ÞFð0Þ

¼ � ~G2ð0Þ @

@m2
~Gð0Þ; (29)

with F in (26). We then see that we arrive at the ITF result
(21) but without the additional terms discussed in that
section, since the proportionality factors between this dia-
gram and (29) or (20) come only from combinatorics and
are therefore identical. We will use this real-time prescrip-
tion to properly define our free energy.

IV. APPLICATIONS TO THE PION GAS

A. Evaluation of the ChPT free energy

We apply our previous results to the pion gas, described
by ChPTwith two light quark flavors of mass mu ¼ md �
mq [30,31]. The Lagrangian is constructed as an expansion

in derivatives and pion masses, genericallyOðpÞwith p �
�� � 1 GeV, so that L ¼ L2 þL4 þ � � � with L2k ¼
Oðp2kÞ. In the range of temperatures and chemical poten-
tials we are interested in, both T, �� ¼ OðpÞ formally,
which corresponds to T below Tc � 200 MeV. The ChPT
OðpDÞ power of a given diagram is given by Weinberg’s
power counting D ¼ 2ðNL þ 1Þ þP

k2Nkðk� 1Þ [32],
where NL is the number of loops and Nk is the number
of vertices coming from L2k. In our approach, we do not
perform any formal chiral expansion in ��, except in
higher-order contributions (see our discussion below and
in Sec. III), where it is reasonable to expand in ��=T. We
will closely follow the notation and conventions in [31],
where the explicit expressions of the L2 and L4 can be
found. The Lagrangian L2 is the nonlinear-� model,
whose free parameters are the pion decay constant and
mass to leading order f ¼ f�ð1þOðp2ÞÞ with f� ’
93 MeV and m ¼ m�ð1þOðp2ÞÞ, m� ’ 140 MeV. To
fourth order, L4 contains five independent low-energy
constants l1–4 and h1 which absorb the divergences of
the one-loop diagrams with only L2 vertices. The
renormalized �li appear in physical processes such as pion
scattering and therefore their values can be fitted experi-
mentally. We will use the same central values given in

[30,31] in order to compare more easily with the results
in [31] at �� ¼ 0. Those values are �l1 ¼ �6:6, �l2 ¼ 6:2,
�l3 ¼ 2:9, and �l4 ¼ 3:5. The constant h1 multiplies a con-
tact term and appears in the vacuum free energy and quark
condensate. We use also the estimate in [30,31] of �h1 ’
3:4. The Lagrangians of higher orders will only appear
through renormalization either of the vacuum energy or the
pion mass and therefore the low-energy constants of those
orders will not show up once the results are expressed in
terms of the physical pion mass (see details below).
The free-energy density z, from which thermodynamical

observables can be obtained, is defined as customary:

~zðT;��Þ ¼ �T lim
V!1

1

V
log ~Z�ðT;��Þ: (30)

We also define the thermodynamic pressure as in [31],
i.e., subtracting its T ¼ 0 contribution given by the vacuum
energy density:

~PðT;��Þ ¼ ~z0 � ~zðT;��Þ; ~z0 ¼ lim
T!0þ

~z : (31)

It is important to emphasize that all of our results for the
pressure and quantities derived from it have to be under-
stood strictly as time dependent throughout the plasma
expansion, in the sense explained in Sec. II, the time
evolution toward a chemically equilibrated phase being
driven by ��ðTÞ. The diagrams contributing to the free
energy in ChPT are the closed diagrams shown in Fig. 2,
where we follow the same convention as [31] to name the
diagrams. The number assigned to each diagram indicates
the order in the chiral expansion and the numbers inside the
boxes in the vertices refer to the Lagrangian order, the case
ofL2 being indicated by a dot. Recall that for a given order
of the Lagrangian, there are vertices with an arbitrary
number of (even) pions due to the chiral expansion of the
SUð2Þ-valued chiral fieldU ¼ expði�a�a=fÞ, where �a are
the Pauli matrices and �a the pion field.
The leading order ~z2 ¼ �f2m2, coming from the con-

tact term (independent of the pion field) in L2, is indepen-
dent of T and �� and therefore contributes only to the
vacuum energy density ~z0. Note that, according to our
discussion in the previous sections, we will ensure that
all our contributions have a well-defined T ! 0þ limit for
�� <m, i.e., that the contributions to ~z0 to any chiral order
are �� independent. The next order corresponds to
diagrams 4a and 4b in Fig. 2. ~z4a corresponds to the
quadratic pion field contribution in L2 and is therefore
nothing but the free partition function given in (B34)
multiplied by 3 accounting for the 3 pion degrees of free-
dom. The divergent contribution to ~z4a is T and �� inde-
pendent and therefore it merely renormalizes ~z0.
The next order in the chiral expansion is OðT6Þ and the

diagrams contributing are ~z6abc in Fig. 2. It is important to
remark that this is the first order where pion interactions
show up. Graph 6c in Fig. 2 renormalizes ~z0, while 6b is of
the same form as 4a in Fig. 2 and therefore gives rise to the

CHEMICAL NONEQUILIBRIUM FOR INTERACTING . . . PHYSICAL REVIEW D 80, 056003 (2009)

056003-9



free partition function contribution but with the mass
shifted by its tree level L4 renormalization (see
Sec. IVC) which depends on l3. As for diagram 6a in
Fig. 2, taking into account (B32), its contribution is pro-

portional to ~G2ð0Þ. As discussed in Sec. III, in this case the
result is trivially identical in both ITF and RTF and corre-

sponds to the result in [31] replacing Gð0Þ ! ~Gð0Þ:

~z 6a ¼ 3m2

8f2
~G2ð0Þ: (32)

The divergent contribution in (32), according to (B29)
and (B30), contains a contribution to ~z0 and another one
which cancels, as it should, with the one in l3 so that, using
(B35), the total finite result for the pressure to OðT6Þ is

~P ¼ 3

2
~g0ðm�; T;��Þ � 3

8

m2

f2
½~g1ðm; T;��Þ�2 þOðT8Þ;

(33)

with the functions ~g1 and ~g0 given in (B31) and (B33),
respectively, and where m� is the physical pion mass at
T ¼ �� ¼ 0, related to the bare mass m to this order as
[30]

m2
� ¼ m2

�
1�

�l3
32�2

m2

f2
þOðm4Þ

�
: (34)

Recall that, to this order, the difference between m� and
m is only relevant in the ~g0 contribution in (33). The same
applies to the distinction between f and f�:

f2� ¼ f2
�
1þ

�l4
8�2

m2

f2
þOðm4Þ

�
: (35)

We consider now the OðT8Þ contributions shown in
Fig. 2. Now, there are several aspects which make the
calculation qualitatively different from the OðT6Þ one.
An important point is that to this order we may expect
that our approximation of particle number conservation is
less accurate, since vertices entering number-changing
processes show up. Consider for instance the diagrams
contributing to 2� $ 4� processes in the thermal bath,
which to leading order in ChPT are given by the tree-level
diagrams shown in Figs. 4(a) and 4(b). Now, unlike the
OðT6Þ case, one can draw vacuum diagrams from these
processes by identifying external lines. For instance, join-

ing lines in pairs in the graph in Fig. 4(a) as 1-2, 3-4, 5-6
and equivalent combinations leads to diagram 8a in Fig. 2.
Similarly, joining 1-2, 3-6, 4-5 in Fig. 4(b) produces
diagram 8c. This is not a one-to-one correspondence. For
instance, joining 1-3 and 2-4 lines in the elastic one-loop
diagram in Fig. 4(c) yields also diagram 8c in Fig. 2.
Diagram 8b in Fig. 2 can also be obtained from an elastic
process [Fig. 4(c) joining 1-2, 3-4] or from an inelastic one
[Fig. 4(b) joining 1-3, 2-6, 4-5]. The crucial point is that
none of the OðT6Þ vacuum closed diagrams in Fig. 2 can
be obtained from the lowest order inelastic diagrams in
Figs. 4(a) and 4(b). This distinctive feature can be inter-
preted as a way to identify the validity range of our
approximation. However, we should bear in mind that
these OðT8Þ corrections are meant to be relevant only
very near Tc [31] and therefore in the region where chemi-
cal equilibrium is nearly restored and�� ! 0, not surpris-
ingly due to the presence of the particle-changing
processes just discussed [8]. Precisely for this reason, the
�� dependence of these diagrams is suppressed in powers
of ��=T and ��=m�. Therefore, numerically our ap-
proach will still be justified to this order. In addition, as
we have explained in Sec. III, taking ��=T small justifies
in practice to get rid of unnatural terms in the ITF
formulation.
With the above considerations in mind, we proceed to

evaluate the OðT8Þ diagrams in Fig. 2. Graph 8h renorm-
alizes ~z0 and graphs 8f and 8g renormalize the pion mass to
Oðm6Þ. Graph 8a is proportional to a third power of the
propagator at the origin, with the same coefficient as in
[31]:

~z 8a ¼ � 25m2

48f4
~G3ð0Þ; (36)

which contains divergent contributions, according to
(B29).
The graph 8b in Fig. 2 has been analyzed in Sec. III. The

relevant integral contributing to this graph is (20) in the
ITF and (29) in the RTF with the prescription discussed in
that section. The difference between both formulations is
of Oð��=TÞ and therefore expected to be numerically
small, for the reasons just discussed. The rest of the con-

tributions to this graph are proportional to ~G3ð0Þ and the
proportionality constants are the same as in [31]. Thus,

FIG. 4. (a), (b) Diagrams contributing to leading order (tree level) to 2� ! 4� processes. (c) A one-loop contribution to elastic ��
scattering.
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adopting the RTF prescription, we get

~z 8b ¼ m2

16f4
~G2ð0Þ

�
8þ 3m2 @

@m2

�
~Gð0Þ; (37)

whose divergent contribution can also be separated using
(B29).

Graphs 8d and 8e in Fig. 2 have the same form as graph
6a in (32), but due to the form of the L4 Lagrangian and
following also our previous RTF prescriptions, we arrive at
the same structure as in [31]:

~z8d þ ~z8e ¼ � 3

f4

�
ð2l1 þ 4l2Þ½ ~G�
�2

þ ~Gð0Þ
�
ð3l1 þ l2 þ l3Þm4 ~Gð0Þ � l3

2
m6 @

@m2

�

� ~Gð0Þ
�
; (38)

where ~G�
 ¼ @�@
 ~Gð0Þ, which has the same properties as

in [31], namely, its divergent contribution is the same (T
and �� independent) while its finite part can be written in
the same way in terms of ~g0 and ~g1.

The remaining graph is 8c in Fig. 2. Following again the
RTF prescription, this contribution is

~z 8c ¼ 1

48f4
½3m4 ~J1 � 72~J2 þ 16m2ð ~Gð0ÞÞ3�; (39)

where

~J1 ¼ i
Z

d4x½ ~D4
11ðxÞ � ~D4

12ðxÞ�

¼
Z

d3 ~x
Z 1

0
dtf½ ~G>ðt; ~xÞ�4 � ½ ~G<ðt; ~xÞ�4g;

~J2 ¼ i
Z

d4x½ð@� ~D11ðxÞ@� ~D11ðxÞÞ2

� ð@� ~D12ðxÞ@� ~D12ðxÞÞ2�:

(40)

Written in the above form, it is not difficult to show
that for �� ¼ 0, when the propagators are � periodic,

i.e., G<ðtþ i�Þ ¼ G>ðtÞ, one has for instance J1 ¼R
d3 ~x

R�
0 d��

4
Tð�; ~xÞ and similarly for J2 [31]. As

we have seen, for �� � 0 the periodicity condition
does not hold. However, for this diagram, instead of
working directly with the RTF expressions (40), we

will make use of the fact that ~G<ðtþ i�Þ ¼ ~G>ðtÞ þ
Oð���Þ and neglect the nonperiodic terms, so that we

end up with ~J1 ’
R
d3 ~x

R�
0 d�

~�4
Tð�; ~xÞ and ~J2 ’R

d3 ~x
R�
0 d�ð@� ~�Tð�; ~xÞ@� ~�Tð�; ~xÞÞ2. This approximation

simplifies considerably the renormalization of this graph,
since now we can follow the same steps as in [31]. First

we separate ~�ð�; ~xÞ ¼ ~G>ð�i�; ~xÞ ¼ ~�ð�; ~xÞT¼��¼0 þ
	~�ð�; ~xÞ using the representation (B10) and (B11). The

divergent contributions in the integrals (40) are then con-

tained in the ð	~�~�0Þ2, 	~�ð~�0Þ3, and ð~�0Þ4 terms and can
be renormalized with the same counterterms as in [31]
replacing the g0;1 by ~g0;1. The finite part of the ~J1;2 inte-

grals can be evaluated numerically. A crucial point is that
this approximation is consistent, as far as renormalization
is concerned, with our previous evaluation of the ~z8abde
diagrams since the divergent parts of the terms propor-
tional to ~g20, ~g0~g1, and ~g21 arising from the ~J1;2 integrals

cancel exactly with those coming from the other four
diagrams, while the terms proportional to ~g1 add together
to renormalize the physical pion mass according to the
definition

m� ¼ � lim
T!0þ

T log ~P ðT;�� ¼ 0Þ: (41)

In addition, as it happens for �� ¼ 0, this ensures that
neither the tree-level constants from L6 nor the T, ��

independent renormalization constants needed to render
~J1;2 finite appear in the final expression for the free energy

once it is expressed in terms of m�. We remark that with
our representation, not only is the renormalization proce-
dure consistent, but the final answer for the full OðT8Þ
contribution amounts to replace nðEpÞ ! nðEp ���Þ in
all the spatial momentum integrals, without dealing with
unnatural terms, like those discussed in Sec. III.
After the previous detailed evaluation, we arrive finally

to a finite expression for the free energy, suitable for
numerical evaluation, with the approximations discussed
above implying that theOðT8Þ corrections are reliable only
for small ��. From this expression we proceed to present
our results for the �� dependence of several relevant
observables.

B. Results for thermodynamical observables

From the energy density, we obtain the quark condensate
(the order parameter of the chiral transition), the entropy
density, and the pion number density in the standard way:

h �qqiðT;��Þ ¼ h �qqið0; 0Þ
�
1þ c

f2
@ ~PðT;��Þ

@m2
�

�
; (42)

~sðT;��Þ ¼ @ ~PðT;��Þ
@T

; (43)

~nðT;��Þ ¼ @ ~PðT;��Þ
@��

; (44)

where c ¼ 1�m2ð4 �h1 þ �l3 � 1Þ=ð32�2f2Þ þOðm4Þ.
We plot our results in Fig. 5. The first feature we observe

is that the OðT6Þ and the ideal gas curves are very close to
one another for all the range of temperatures and chemical
potentials shown. Sizable differences due to the interac-
tions only show up numerically when including theOðT8Þ.
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This is a also a feature of the �� ¼ 0 calculation [31]. For
instance, in the chiral limit (m� ¼ 0) and for �� ¼ 0, the
OðT6Þ in (33) vanishes identically, while the OðT8Þ sur-
vives, producing conformally anomalous contributions to
the pressure [33]. In Fig. 5 we also compare our results
with the virial gas approach [14], where the pressure can be
written at low pion density in terms of the pion scattering
phase shifts. In the curves shown in Fig. 5, the phase shifts
have been calculated perturbatively to Oðp4Þ in ChPT and
using the same set of low-energy constants as for our
perturbative results with the approach of the present paper.
We see that our OðT8Þ results with �� � 0 lie reasonably
close to the virial result, at least for not very high ��. This
is a good consistency check of our present approach.

Another general feature that we observe in the curves is
that the effect of the pion chemical potential is always to
increase thermal effects. Effectively, it acts similar to a
reduction of the effective pion mass [this is more accurate
for T � m� where the typical momenta in the distribution

functions are p ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=m�

p Þ] and therefore for fixed T,
the results for increasing �� go qualitatively in the same
direction as for increasing T with�� ¼ 0. For instance, we

see that the pressure increases for increasing �� and
approaches faster with T the asymptotic limit P�
�2T4=30 [31] expected in the chiral limit (T 	 m�,
��). The effect of interactions is also to increase the
pressure, producing additive contributions in the ChPT
expansion.
The curves for the quark condensate show that the chiral

restoration temperature goes down for�� � 0. This is also
a consequence of the above discussed qualitative behavior,
since the system for �� � 0 is closer to chiral restoration.
With the numerical values we get, we see that if chemical
freeze-out takes place for temperatures below the chiral
phase transition, then we do not expect to see any change in
the value of Tc. On the contrary if Tchem > Tc (which is less
likely with the available experimental information), we
would expect a reduction in Tc compared with the esti-
mates taking �� ¼ 0.
It becomes clear from our discussion in Sec. II that

incorporating additional physical requirements allowing
one to describe ��ðTÞ is crucial in our approach, in order
to be consistent with the chemical nonequilibrium evolu-
tion. In this sense, a very interesting observable is the ratio

FIG. 5 (color online). Results for the pressure, quark condensate, and entropy over density ratio at different chemical potentials and
to different orders in the ChPT interactions.
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of entropy density to pion density, also plotted in Fig. 5. It
has been pointed out [2,3,8] that on general grounds one
expects this ratio to remain almost constant during the
expansion. This is the isentropic expansion approximation,
which is exact in the high T limit T 	 m�,�� for the ideal
gas. We remark that we are restricting here to the gas of
pions. If heavier degrees of freedom are included, such as
the �, one has to account for the total number of pions
�n� ¼ n� þ 2n� þ � � � which includes those ‘‘stored’’ in

the � if the channel � ! �� is considered as the only
source of pion number changing, and similarly with other
resonances (see details in [2,8]). The idea is then that by
fixing s=n to a given value at the chemical freeze-out
temperature Tchem, where �� ¼ 0, going down in the
temperature scale one can keep s=n fixed by increasing
��, as can be seen in Fig. 5. This provides the isentropic
dependence��ðTÞ, which is given in [2,8] for the ideal gas
approximation. We plot in Fig. 6 the isentropic curves
��ðTÞ with a reference value s=n ¼ 4, for which Tchem ’
190 MeV for the ideal gas. The obtained curves follow a
roughly linear behavior, as expected phenomenologically
[3]. The most significant effect we observe is the reduction
of Tchem when OðT8Þ or virial interactions are included.
This is a very natural effect since, as we have discussed in
previous sections, that order in the interaction is the one
where particle-changing processes begin to be relevant and
drive the system back to chemical equilibration. The virial
curve lies reasonably close to our perturbativeOðT8Þ since
the two approaches differ significantly only for rather high
values of �� and T, which are not reached along the curve
��ðTÞ. In fact, in the isentropic evolution our OðT8Þ
approach is better justified since ��ðTÞ � T, m�. We
also remark that the same effect of faster equilibration is
seen when comparing the curves of the ideal pion gas with
that of the ideal pion plus resonances gas, as done in [2].
One can check that the curves in that paper for s=n as a
function of T for different �� are systematically lower
when including resonances, as in our case in Fig. 5 when

including the OðT8Þ or in the virial case and therefore the
free pion and resonance gas equilibrates faster, which is the
feature that we are able to reproduce here including higher-
order pion interactions.

C. Self-energy: Pion thermal mass and width

Within the real-time formalism developed in Sec. III B,
we can calculate the pion self-energy for �� � 0, whose
leading-order corrections to its real and imaginary parts are
given by the diagrams in Figs. 3(a) and 3(b), respectively,
with all vertices coming from the L2 Lagrangian.
It is important to remark that when nonequilibrium

distributions are considered, as is our case here, it has
been pointed out that additional 	2-like or pinching-pole
ill-defined contributions arise [25], which should be regu-
larized keeping a nonzero particle width. We will discuss
the role of those contributions in the last part of this
section.
Consider first Fig. 3(a). It includes a contribution with a

constant vertex proportional to m2 ~Gð0Þ@ ~D11ðpÞ=@m2

which directly renormalizes the pion mass, following
the prescriptions explained in Sec. III B, and derivative
vertices, which contribute either proportional to

h ~Gð0Þ ¼ �m2 ~Gð0Þ (mass renormalization) or as
~Gð0Þp2@ ~D11ðpÞ=@m2 ¼ ~Gð0Þð ~D11ðpÞ þm2@ ~D11ðpÞ=@m2Þ
(mass and wave function renormalization). One can then
follow similar steps as in the standard derivation of the
thermal corrections to the pion self-energy to this order
[10,34], the wave function renormalization being directly
related to the thermal f� through the usual definition in
terms of the residue of the axial-axial current correlator.
The ultraviolet divergences arising in the calculation are
absorbed by the renormalization of the low-energy con-
stants l3 and l4. We finally obtain

m2
�ðT;��Þ ¼ m2

� þ m2

2f2
~g1ðm; T;��Þ þOðm4Þ; (45)

f2�ðT;��Þ ¼ f2� � 2~g1ðm; T;��Þ þOðm4Þ; (46)

with m� and f� the T ¼ �� ¼ 0 physical values given in
(34) and (35) in terms of m and f to this order.
Taking into account now the corrections to the quark

condensate to the same chiral order, i.e., OðT6Þ, which is
given from (42) and (33) using (B35):

h �qqiðT;��Þ ¼ h �qqið0; 0Þ
�
1� 3

2f2
~g1ðm; T;��Þ

�
þOðT8Þ; (47)

we obtain that the Gell-Mann–Oakes–Renner (GOR) rela-
tion [35] holds also for �� � 0 to this order (one-loop
ChPT):

f2�ðT;��Þm2
�ðT;��Þ

h �qqiðT;��Þ
¼ f2�ð0; 0Þm2

�ð0; 0Þ
h �qqið0; 0Þ ¼ �mq: (48)FIG. 6 (color online). Dependence of ��ðTÞ in the isentropic

approximation, with the fixed value s=n ¼ 4.
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The GOR relation in terms of thermal quantities at T �
0, �� ¼ 0 had been verified to one loop in [36]. To this
order, the thermal mass varies little, also at �� � 0 (see
below) so that the evolution of f� follows that of the quark
condensate and both behave as order parameters. However,
beyond one loop, the GOR does not hold for thermal
quantities [36].

Another important observation is that the shift (45) in
the mass to this order can be written, as in the�� ¼ 0 case
[10] in terms of the elastic pion-pion forward scattering
amplitude, from (B31):

m2
�ðT;��Þ �m2

� ¼ �
Z d3 ~p

ð2�Þ3
1

2Ep

1

e�ðEp���Þ � 1

� Re½Tf
��ðs ¼ ðEp þm�Þ2 � j ~pj2Þ�;

(49)

where E2
p ¼ m2

� þ j ~pj2 and Tf
��ðsÞ is the isospin averaged

forward scattering amplitude:

Tf
��ðsÞ � T��ðs; 0; uÞ ¼ 1

3

X2
I¼0

ð2I þ 1ÞTIðs; 0; uÞ

¼ 32�

3

X2
I¼0

X1
J¼0

ð2Iþ 1Þð2J þ 1ÞtIJðsÞ

’ 32�

3
½t00ðsÞ þ 9t11ðsÞ þ 5t20ðsÞ�

¼ �m2

f2
þOðs2; m4Þ; (50)

where the last expression is the lowest order Oðp2Þ (tree-
level diagrams with L2 vertices); TIðs; t; uÞ are the projec-
tions of the scattering amplitude with definite isospin I; s,
t, and u are the Mandelstam variables satisfying sþ tþ
u ¼ 4m2

�; and tIJ are the partial waves, defined in the
center of mass frame with definite isospin I and angular
momentum J. We follow the conventions in [30]. In the
previous expression, we have included only the partial
waves with lowest angular momentum J � 1. Those with
J > 1 are negligible for

ffiffiffi
s

p
below inelastic thresholds, such

as theK �K one, and for the temperatures involved here [10].
The result in (49) is the generalization to �� � 0 of the

formula relating the shift in the self-energy with the density
of states and the scattering amplitude to lowest order in the
density (dilute gas regime) [10]. These types of relations
were first derived by Luscher [37] studying finite-volume
corrections. A very interesting point is that it admits a
natural extension [10] by considering (in the dilute gas
regime) not only the perturbative tree-level Oðp2Þ ampli-
tude, but also higher orders, including unitarized ampli-
tudes. In the latter case, unitarized partial waves tUIJðsÞ for
�� scattering can be constructed to exactly satisfy the
unitarity relation:

Im tUIJðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

s
jtUIJj2; (51)

matching at the same time the perturbative ChPT expan-
sion and providing expressions that can be analytically
continued to the complex s plane. All these features are
satisfied by the inverse amplitude method (IAM) scattering
amplitudes [38] which reproduce scattering data up toffiffiffi
s

p � 1 GeV and all the low-lying resonances, which in
the pure pion case considered here reduce to the �ð770Þ
and the f0ð600Þ or �. Recall that the ChPT amplitudes
satisfy the unitarity relation (51) only perturbatively order
by order, violating the unitarity bounds for higher energies
and thus not being able to reproduce resonances.
In Fig. 7 we show our results for the thermal mass,

considering Oðp2Þ, Oðp4Þ and IAM unitarized amplitudes
in (49). We have used the same set of low-energy constants
as in our previous calculations, i.e., the �li given at the
beginning of Sec. IVA. For the case of the unitarized
amplitudes, this set is adequate to compare with the per-
turbative ChPT expressions, although it does not give the
best results for the mass and width of the resonances
generated with the IAM. We have checked that our results
do not change qualitatively by changing for instance to the
set given in [39], which gives better physical values for the
�, f0ð600Þ mass and width.
Our results show that the leading order, the ChPTOðp2Þ

given by the tadpole diagram in Fig. 3(a), produces a
thermal mass slightly increasing with temperature and
chemical potential. However, including the Oðp4Þ or uni-
tarized corrections to the amplitude, the mass tends to
decrease significantly with T and ��. Our results at �� ¼
0 agree with [10]. The difference between the Oðp4Þ and
the unitarized curve is not very relevant here. Our Oðp2Þ
curve agrees reasonably with a linear-sigma model calcu-
lation [40] which agrees with ChPT to this order at�� ¼ 0
and where the chemical potential is introduced in analogy
with the charged scalar field case.
These results suggest an interesting scenario: the pion

system could undergo Bose-Einstein (BE) condensation
driven by the dropping of the thermal mass by interactions.
Recall that we are dealing with BE condensation of both
neutral and charged pions, since we are considering an
electrically neutral system with finite pion density. The
physical situation is then different from the charged pion
or kaon condensation taking place in nuclear matter [41] or
isospin chemical potential [20] scenarios, although the
dropping of the effective mass takes place also in the
former. BE condensation for pion number and its possible
phenomenological consequences in heavy-ion collisions
has been extensively studied in the literature [42].
Among the observable consequences are the anomalous
enhancement of the low-pT pion spectrum and of number
fluctuations in high multiplicity events.
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In our grand-canonical interacting framework we can
describe the corrections to BE condensation due to pion
interactions. In the standard free case, the BE limit is
reached when �� ! m� from below (by definition the

system is below the condensed phase). Those values for
the pion chemical potential seem too high compared with
those measured in heavy-ion collisions at thermal freeze-
out Tther � 100 MeV [2,3,5]. In other words, the required

FIG. 7 (color online). Results for the thermal mass dependence on temperature and pion chemical potential, considering different
orders in the scattering amplitude in (49).

FIG. 8 (color online). Bose-Einstein condensation lines. Left panel: the curve �BE
� ¼ m�ðT;��Þ with the thermal mass from the

Oðp4Þ amplitudes, compared to the isentropic expansion curves for the virial case to the same order and for different s=n values. Right
panel: pion density versus temperature in the BE limit �� ! m�

� for different orders in the interaction, compared to the ideal gas and
to the virial case with thermal mass.
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pion densities for BE condensation might not be reached.
However, if the effective particle massm�ðT;��Þ drops by
interactions among the medium constituents, the value
�� ¼ m�ðT;��Þ would be reduced. We show that line
in Fig. 7. In Fig. 8 (left panel) the resulting �BE

� ðTÞ ¼
m�ðT;�BE

� ðTÞÞ curve is represented and compared with the
isentropic curves corresponding to different values of s=n.
We see that the BE curve thus defined lies not very far from
the isentropic approach and the expected phenomenologi-
cal values. Those curves correspond to the Oðp4Þ ampli-
tudes, both for the thermal mass and for s and n (in the
virial approach). In Fig. 8 (right panel) we show also the
density-temperature curves corresponding to �� ! m�

�

for different orders in the interaction. The OðT6Þ allows
for lower density values, but the virial contribution points
in the opposite direction. We also show the curve corre-
sponding to the BE limit by lowering of the mass, as we
have just explained, for the same virial approach, which
produces a considerable lowering of the required densities.
In any case, the corrections due to interactions are small
near thermal freeze-out. We also remark that some of our
previous results, including those regarding BE condensa-
tion by mass reduction, rely on the validity of the dilute gas
regime, for instance when using (49), but corrections might
be important for temperatures close to the chiral transition
or chemical potentials close to m�.

Finally, we turn to the calculation of the leading-order
imaginary part of the pion self-energy, given in ChPT by
Fig. 3(b). This is the leading-order contribution to the
thermal collisional width �p ¼ �Im�RðEp; j ~pjÞ=ð2EpÞ �
Ep with Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~pj2 þm2

�

p
and �R the retarded self-

energy, which defines the dispersion relation p2 ¼ m2
� þ

�Rðp0; j ~pj;TÞ.
As we have commented on in Sec. III B, wewill evaluate

the retarded correlator in the real-time formalism, follow-
ing the circling rules in [28], which also apply to the�� �
0 case. Applying those rules to the diagram in Fig. 3(b) we
have

Im�Rðp0; j ~pjÞ ¼ � 1

2
½ ~H>ðp0; j ~pjÞ � ~H<ðp0; j ~pjÞ�

¼ � i

2
½�21ðp0; j ~pjÞ � �12ðp0; j ~pjÞ�;

(52)

where ~H>ð<Þ are obtained by using for the three internal

lines in the diagram the ~G>ð<Þ RTF propagators. With the
usual RT self-energy definition [24] and our convention for
the D12, D21 propagators given in Sec. III B, we have
H> ¼ i�21 and H< ¼ i�12 for the diagram in Fig. 3(b),
since, once a particular choice of ij indices (i, j ¼ 1, 2) has
been made for the two vertices in that diagram, the three
internal lines carry the same ij combination.

Now, according to our discussion in Sec. III B and in
Appendix B:

~G>ðkÞ ¼ 2�	ðp2
0 � E2

pÞ½
ðp0Þ þ nðjp0j ���Þ�
¼ e

~�kk0 ~G<ðkÞ ¼ e�½k0���sgnðk0Þ� ~G<ðkÞ; (53)

so that we get for the thermal width:

�pðT;��Þ ¼ 1

4Ep

Z Y3
i¼1

d4ki
ð2�Þ4 �ðk1; k2; k3; pÞ

� ~G>ð�k1Þ ~G>ðk2Þ
� ~G>ðk3Þð1� e��½Ep���fðk1;k2;k3Þ�Þð2�Þ4
� 	ðEp þ k01 � k02 � k03Þ
� 	ð3Þð ~pþ ~k1 � ~k2 � ~k3Þ; (54)

where k1;2;3 label the three internal lines, � is the squared

vertex function coming from the L2 Lagrangian, and

fðk1; k2; k3Þ ¼ sgnðk02Þ þ sgnðk03Þ � sgnðk01Þ: (55)

Recall that in the �� ¼ 0 case, the f term is absent so
that one ends up with a prefactor e��Ep � 1 ¼
1=ð1þ nðEpÞÞ in the thermal width. The natural expecta-

tion from replacing just the distribution function n ! ~np
for�� � 0would be then Ep ! Ep ��� in that factor, as

well as the modifications of the internal distribution func-
tions nðEiÞ ! nðEi ���Þ, where Ei is short for Eki . This

is indeed the result found in [9] derived from kinetic
theory. In our case, it is not obvious that the answer is
the same, since the function f above is not equal to 1 for the
eight possible combinations of signs of the three internal
k0i . We denote them by s1s2s3, with si ¼ sgnðk0i Þ. Now, we
take into account that the 	 functions in each of the internal
lines put them on shell, i.e., k0i ¼ 
Ei and global energy-
momentum conservation in the diagram imposed by the
	 functions in (54). Thus, the combination þ�� giving
f ¼ �3 is excluded by energy conservation Ep þ E1 >

0>�E2 � E3. On the other hand, from three-momentum
conservation and the on-shell conditions we have that for
any combination it should hold A ¼ B, where we denote

A � E2
p þ E2

1 � E2
2 � E2

3 and B � 2ð ~k2 � ~k3 � ~p � ~k1Þ and,
in addition �C � B � C with C ¼ 2ðpk1 þ k2k3Þ, and
where ki, p are short for j ~kij and j ~pj, respectively.
Therefore, the case þþ� (f ¼ �1) is also excluded,
since for that combination Ep þ E1 ¼ E2 � E3 so that

A ¼ �2ðEpE1 þ E2E3Þ<�C. The same reason excludes

þ�þ (f ¼ �1). Combinations �þþ (f ¼ 3) and
��� (f ¼ �1) give A ¼ 2ðEpE1 þ E2E3Þ>C and

are thus excluded as well. Therefore, the only combina-
tions remaining areþþþ,�þ�, and��þ, the three
of them giving f ¼ 1 and the same contribution from the
vertices as for �� ¼ 0, given in [10].
It is not difficult to repeat the above analysis, now with

the external energy p0 ¼ �Ep. In that case, every combi-

nation of relative signs between the Ei is obtained from the
previous case by flipping the three si, the A, B, and C
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functions being independent of the sign of p0. Thus, apply-
ing the same arguments, the only surviving combinations
are now ���, þ�þ, and þþ�, the three of them
giving f ¼ �1. Therefore, what we have proven in terms
of the 12 and 21 components of the self-energy for this
diagram is

�6b
21ðp0 ¼ 
Ep; pÞ ¼ e�ðp0���sgnðp0ÞÞ�6b

12ðp0 ¼ 
Ep; pÞ
¼ e

~�pp0�6b
12ðp0 ¼ 
Ep; pÞ; (56)

which is the usual equilibrium relation with � ! �p. This

relation will be of use in the discussion at the end of this
section about possible higher-order corrections related to
pinching poles.

In conclusion, the result (54) we find with our diagram-
matic method is the same as in kinetic theory [9], which,
after relabeling k1 $ �k3 in �þ� and k1 $ �k2 in
��þ and performing the three integrals in k0i using the
on-shell 	 functions, can be written as

�pðT;��Þ ¼ 1

8Ep

1

1þ nðEp ���Þ
Z Y3

i¼1

d3ki
ð2�Þ32Ei

� nðE1 ���Þ½1þ nðE2 ���Þ�
� ½1þ nðE3 ���Þ�jT��ðs; tÞj2ð2�Þ4
� 	ðEp þ E1 � E2 � E3Þ
� 	ð3Þð ~pþ ~k1 � ~k2 � ~k3Þ; (57)

where T�� is the isospin averaged elastic pion scattering

amplitude with s ¼ ðEp þ E1Þ2 � j ~pþ ~k1j2, and t ¼
ðEp � E2Þ2 � j ~p� ~k2j2.

Taking now the dilute gas regime in the previous ex-
pression, which amounts to neglect all the Bose-Einstein
functions n � 1 except nðE1 ���Þ, gives rise to the
extension of Luscher’s formula in terms of the forward
scattering amplitude, as in (49) but now for the imaginary
part of the self-energy through the pion thermal width
(which vanishes at T ¼ 0):

�DG
p ðT;��Þ ¼ 1

2Ep

Z d3 ~k

ð2�Þ3 nðEk ���Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� 4m2Þp

2Ek

���ðsÞ

¼ 1

2Ep

Z d3 ~k

ð2�Þ32Ek

nðEk ���Þ ImTf
��ðsÞ;

(58)

where we have relabeled k1 ! k and ��� is the total ��
cross section

���ðsÞ ¼ 32�

3s

X
IJ

ð2I þ 1Þð2J þ 1ÞjtIJðsÞj2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� 4m2Þp ImTf

��ðsÞ; (59)

where the last line is the optical theorem, following from
exact unitarity (51).
We remark that our final results both for the real and

imaginary parts of the self-energy to this order correspond
to the replacement n ! ~n evaluated at positive energies.
This is not only natural from the kinetic theory viewpoint
but it is also formally obtained by performing such replace-
ment in the analytically continued �� ¼ 0 ITF self-
energies.
The thermal width is of phenomenological relevance,

since it enters directly in the calculation of transport co-
efficients in the meson gas [33,43]. It is then important to
estimate pion chemical potential effects in the width during
the phase of chemical nonequilibrium, where the particle
number is approximately conserved and transport phe-
nomena can be described relying on the dominance of
elastic collisions, which is also consistent with the dilute
gas regime. On the other hand, in this regime the mean

collision time defined for ultrarelativistic particles as � ¼
1=ð2 ��Þ [3,8,9] with the averaged width:

��ðT;��Þ ¼
R
d3 ~p�pðT;��ÞnðEp ���ÞR

d3 ~pnðEp ���Þ
; (60)

provides direct information about thermal relaxation. We
represent � in the dilute approach in Fig. 9, using the
scattering amplitude in (58) to different orders, including
the unitarized case. We use the same set of �li constants as in
the rest of the paper.
We see in the figure that the effects of correctly repro-

ducing the energy behavior of the scattering amplitude is
important for evaluating the collision time. In particular,
the unitarized curve shows important differences with the
perturbative ones in the temperature range shown. This was
also noticed in [10] at �� ¼ 0 and the importance of
including unitarized corrections to the width for transport
coefficients in the meson gas has been highlighted in
[33,43], for instance, regarding violations of AdS/CFT
bounds for the shear viscosity over entropy ratio or corre-
lations between the bulk viscosity and the conformal
anomaly.
Another clear effect that we observe is the reduction of

the mean time with the pion chemical potential, also ob-
served in [9] with Oðp2Þ amplitudes. Physically, in the
temperature regime where � is much smaller than the
typical plasma lifetime (� 10 fm=c), which at the same
time is small compared to the inelastic collision time
driving the system to chemical equilibrium, the system
remains in thermal but not chemical equilibrium. From
the estimates of the inelastic collision rates given for
instance in [8] and the results in Fig. 9, this would happen
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at �� ¼ 0 typically in the range 120 MeV< T <
180 MeV. However, precisely in that regime, and as we
have explained in this paper, �� � 0, its typical values
being given by the isentropic curve in Fig. 6, which means
that the range of thermal equilibrium enlarges from below,
from the commented reduction of � with ��. In fact,
estimating the thermal freeze-out temperature Tther as
that where this approximation ceases to be valid, i.e.,
where �� 10 fm=c (this type of dynamical condition has
also been used in [1] to determine the freeze-out condi-
tions) gives a shift in the thermal freeze-out temperature
�Tther ’ �20 MeV with respect to the �� ¼ 0 case, fol-
lowing approximately the isentropic values in Fig. 6. In
particular, using the unitarized results in Fig. 9 we obtain in
this way Tther ’ 95 MeV, close to experimental values.

Finally, let us comment on the pathological nonequilib-
rium terms found in [25] in a g2�4 context. Those terms
are of the type of 	2 functions at the same point, or
pinching singularities and therefore have to be regularized
by keeping a nonzero particle width in the propagators, i.e.,
�p � 0 in our case. The first nonvanishing term of this kind

in the g2�4 theory is the three-loop diagram given in
Fig. 2b of [25]. Note that formally this is an Oðg6Þ correc-
tion, while the diagrams we have considered here in Fig. 3,
for which there are no such pathologies, would be Oðg2Þ
andOðg4Þ, respectively, in that counting. Nevertheless, the
argument in [25] is that those contributions are propor-
tional to the inverse width 1=� with � ¼ Oðg4Þ and there-
fore could become of the same order as the leading ones.
The form of such a leading pinching-pole term [25] in our
case isZ

dP�RðpÞ�AðpÞf½ð1þ ~npðp0Þ��6b
12 ��6b

21 ~npðp0Þg;
(61)

where the self-energy components of the diagram in
Fig. 3(b) that we have analyzed above enter directly to
this order and �R;A denote the retarded/advanced propa-

gators. Let us isolate the leading �p ! 0þ behavior of the

previous expression. The product �R�A is the character-
istic pinching-pole contribution appearing typically in dia-
grammatic calculations of transport coefficients [33,43]
and in the �p ! 0þ behaves as

�RðpÞ�AðpÞ ��p!0þ �

2Ep�p

	ðp2
0 � E2

pÞ; (62)

which puts on shell (p0 ¼ 
Ep) the integrand of (61).

Now, we recall the relation (56) we have derived for the
diagram in Fig. 3(b), together with the properties of the

‘‘modified’’ distribution function, in particular, 1þ
~npðp0Þ ¼ e

~�p ~npðp0Þ. Altogether, this means that the

leading-order pathological contribution (61) vanishes in
our case in the �p ! 0þ limit. There may be higher-order

corrections of this kind, but in accordance with the power
counting in [25], those would be subleading with respect to
the contributions in Fig. 3 that we have analyzed in this
section.
The previous analysis showing the absence of pathologi-

cal terms is only valid to lowest order in those terms.
Further conclusions can only be reached with a complete
ChPTanalysis of higher-order pinching-pole contributions,
extending that in [25], which is beyond the scope of this
work. Nevertheless, it is worth pointing out that the low-T
ChPT counting does not involve any coupling constant,
which implies important differences with respect to the
g2�4 one in the perturbative behavior of pinching dia-
grams at low T [43]. In addition, the analysis of [25] shows
that the nonequilibrium pathological terms are always
proportional to 	n, the deviation from the Bose-Einstein
distribution function. Thus, in our case, we can use an
argument similar to the one we invoked in Sec. IVA
when dealing with the OðT8Þ terms in the partition func-
tion. Namely, that in the ChPT counting, those diagrams
are expected to be important for temperatures for which
��ðTÞ � 	n � 1, giving a further suppression. We finally
remark that in the �� � 0 scenario, the presence of non-
vanishing pinching-pole terms have also their origin in the
presence of particle-changing processes (see also our dis-
cussion in Sec. IVA). In fact, self-energy combinations of
the form (61) enter directly in the Boltzmann equation
describing the rate of particle number change [25]. The
fact that the leading correction of that type (61) vanishes in
our case seems to be related to the fact that the leading self-
energy corrections arising from the diagrams in Fig. 3 can
always be expressed in terms only of the elastic ��

FIG. 9 (color online). Mean collision time in the elastic and dilute limits, considering different orders for the pion scattering
amplitude and different values for the pion chemical potential.
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scattering amplitude, as we have discussed extensively
throughout this section.

V. CONCLUSIONS

In this work we have developed a path-integral diagram-
matic formalism in order to deal with chemical nonequi-
librium effects in interacting scalar field theories, in the
regime where particle number is approximately conserved.
Within the theoretical framework of holomorphic path
integrals and thermal field theory, we have derived the
relevant Feynman rules for nonzero particle number
chemical potential �, whose validity is restricted to the
temperature regimes where one can neglect particle-
changing processes. This derivation in the interacting
case is original to this paper, to the best of our knowledge.

We have addressed some subtleties related to the choice
of contour in complex times, leading to the extension of
real- and imaginary-time formalisms at � � 0. We have
shown that the consistent formulation is the real-time one,
in agreement with other nonequilibrium formulations. The
imaginary-time formalism can lead to spurious contribu-
tions, related to the loss of periodicity or global KMS
conditions. These problems are not present in the real-
time formalism, once a proper energy representation for
the propagators is chosen, in accordance with the standard
� ¼ 0 choice. In addition, following previous studies in
the literature at � ¼ 0, we have been able to construct the
combinations of real-time diagrams leading to retarded
correlators and to closed diagrams contributing to the
free energy.

We have applied this formalism to the case of a pion gas,
relevant for relativistic heavy-ion collisions between ther-
mal and chemical freeze-out with nonzero pion number
chemical potential ��ðTÞ. Our description is consistent if
the T dependence of �� encodes the time evolution of the
plasma between those phases. The relevant diagrammatic
scheme for temperatures below chiral restoration is chiral
perturbation theory. In this framework, we have calculated
the leading corrections to the ideal gas coming from chiral
interactions. To leading order OðT6Þ the corrections to the
pressure can be expressed in terms of tadpole diagrams and
are numerically rather small up to Tc. To next to leading
order OðT8Þ, closed diagrams contributing to the free
energy can be obtained from particle-changing processes,
which signals the onset of the number conservation ap-
proximation breakup. Nevertheless, since �� is small for
temperatures where those ChPT corrections become im-
portant, they can be reliably calculated and produce sizable
deviations from the free gas. The results to that order agree
reasonably well with a virial expansion analysis. Our re-
sults for thermodynamical observables show that both
chiral interactions and �� tend to increase the pressure.
The chiral restoration critical temperature decreases with
increasing ��, which would be of relevance only if chiral
restoration takes place for lower temperatures than chemi-

cal freeze-out. We have also calculated the isentropic
��ðTÞ curve for different orders in the interactions. The
corrections to the ideal gas show a significant reduction of
the chemical freeze-out temperature, which is the expected
effect of interactions, since they increase the probability of
producing inelastic processes. The same effect had been
observed previously in a free gas of pions and resonances.
Our approach allows one to derive thermal corrections to

the pion self-energy at �� � 0, from the leading-order
ChPT diagrams, both for the real and imaginary parts of
the retarded correlator. The imaginary part comes from a
two-loop diagram, for which the use of RTF rules for the
construction of the retarded function is crucial. After a
detailed evaluation, our diagrammatic result is shown to
coincide with the expected expressions from kinetic theory
arguments. We have also discussed the role of higher-order
pinching-pole contributions to self-energies, providing dif-
ferent arguments which support the fact that those correc-
tions are subleading in our approach. The real part of the
self-energy gives the thermal mass, which together with the
condensate and the pion decay constant to the same order,
satisfy the �� � 0 extension of the Gell-Mann-–Oakes–
Renner relation. In addition, both the real and imaginary
parts satisfy a Luscher-like relation in terms of the forward
pion scattering amplitude. This relation allows one to
calculate in the dilute regime the self-energy corrections
for higher orders in the ChPT amplitudes, including uni-
tarized expressions which have the physically expected
energy behavior and reproduce the lightest resonance
states. The results for the thermal mass show a clear
decreasing both with T and �� for Oðp4Þ and unitarized
amplitudes. This suggests the interesting possibility of
reaching Bose-Einstein condensation when the effective
thermal mass approaches the chemical potential. This
mechanism would require lower pion densities to reach
BE condensation. We have discussed this possibility,
which is a purely interacting effect, within the isentropic
values and comparing the pion densities with those in the
standard approach of considering the ideal gas BE limit
� ! m�

� with m� the vacuum mass. Our mass-dropping
BE curve is not far, but still above the isentropic ones for
reasonable values of chemical freeze-out. Finally, using
also the scattering amplitudes, we have evaluated the cor-
rections to the mean collision time at �� � 0. The mean
time decreases with T and �� for all orders in the inter-
action, which implies a sizable reduction, compared to the
�� ¼ 0 case, of the thermal freeze-out temperature, esti-
mated as that where � equals the typical plasma lifetime.
Summarizing, the diagrammatic field-theory scheme

developed in the present work provides, in our opinion,
useful results regarding the chemically nonequilibrated
phase of the meson gas resulting from a relativistic
heavy-ion collision. In future work we plan to generalize
the analysis presented here to include also the strange
sector (kaons and eta) as well as to extend previous studies
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of transport coefficients by including pion chemical poten-
tials along the lines presented here.
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APPENDIX A: HOLOMORPHIC PATH INTEGRALS

We review here some of the key aspects of the holomor-
phic path-integral representation which are used in the
main text. We will follow the discussion in [23], to which
we refer for more details.

We consider the space S of complex analytic functions
of one complex variable and define the following scalar
product:

hfjgi �
Z d�zdz

2�i
e��zzfðzÞgðzÞ; (A1)

where the bar denotes complex conjugation (z and �z are
treated as independent variables), and the notation for the
measure means Z d�zdz

2�i
�

Z 1

�1
dxdy

�
; (A2)

with z � xþ iy. We also define the states hzj in the dual
space S� such that hzjfi � fðzÞ, with jfi 2 S. Then, the
set ffng10 , with

fnðzÞ � znffiffiffiffiffi
n!

p ; (A3)

constitutes an orthonormal basis for S with the inner
product (A1). This implies, in particular,Z dz0d�z0

2�i
e�z0 �z0e�z

0zfðz0Þ ¼ fðzÞ: (A4)

We can also calculate the scalar product:

hzj�z0i ¼ X1
n¼0

fnðzÞfnðz0Þ ¼
X1
n¼0

1

n!
ðz�z0Þn ¼ ez�z

0
; (A5)

where we will denote the dual of hzj by j�zi. Now, from the
definition (A1), the identity operator can be written as

1̂ ¼
Z d�zdz

2�i
e��zzj�zihzj: (A6)

Since the functions (A3) constitute an orthonormal basis,
we can calculate the trace of an operator as follows:

Tr f�g ¼ X1
n¼0

hfnj � jfni ¼
Z d�zdz

2�i
e��zzhzj � j�zi: (A7)

The prescription (6) defines a representation of the creation

and annihilation operators on S. Therefore,

hzjâyj�z0i ¼ zhzj�z0i ¼ zez�z
0
;

hzjâj�z0i ¼ @

@z
hzj�z0i ¼ �z0ez�z0 :

(A8)

For the purpose of obtaining a path integral, we need to
know how to calculate the matrix elements (kernels) of the

kind Oðz; �z0Þ � hzjÔðây; âÞj�z0i, where Ô is an operator
expressed in terms of creation and annihilation operators.
If the operator is expressed in normal-order form (which
we denote by the subscript N) i.e., arranging creation
operators to the left and annihilation to the right, the
kernels can be written in a particularly useful way, from
(A8), as

hzjÔNj�z0i ¼ ONðz; @=@zÞez�z0 ¼ ONðz; �z0Þez�z0 : (A9)

In particular, we will need the kernel corresponding to
‘‘time evolution’’:

U ðz; �z0; tf � tiÞ � hzje�iðtf�tiÞĤN j�z0i; (A10)

with ĤN the normal-ordered Hamiltonian of the system.
For that purpose, as customary, we divide the interval

tf � ti into n subintervals of infinitesimal length " and we

will take the n ! 1 limit in the end. Having in mind the
application to thermal field theory, we will take complex
times t 2 Cwhere C is the contour starting at ti and ending
at tf ¼ ti � i� as shown in Fig. 1.

Now, from (A9), for an infinitesimal time interval:

U ðz1; �z2;"Þ ’ e�i"HNðz1;�z2Þez1 �z2 ; (A11)

so that, inserting the identity operator (A6) n� 1 times in
(A10) one gets

Uðz; �z0; tf � tiÞ

¼
Z Yn�1

k¼1

dzkd�zk
2�i

exp

�
z1 �z

0 þ Xn�1

k¼1

½ðzkþ1 � zkÞ�zk

þ "ĤNðzkþ1; �zkÞ�
�
; (A12)

with zn ¼ z.

For the Hamiltonian (3) one has Ĥ ¼ ĤN þ!=2 and the
previous integral can be explicitly calculated by using the
standard formula [23]:

Z Yn
k¼1

dzkd�zk
2�i

e��zAzþ �uzþu�z ¼ ðdetAÞ�1e �uA�1u; (A13)

which, taking the n ! 1 limit, yields

U 0ðz; �z0; tf � tiÞ ¼ expðz�z0e�i!ðtf�tiÞ þ�½j�Þ; (A14)

where the subscript ‘‘0’’ distinguishes the particular case of
the Hamiltonian (3) and
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�½j� ¼ i
Z
C
dt

�
z
e�i!ðtf�tÞffiffiffiffiffiffiffi

2!
p jðtÞ þ �z0

ei!ðti�tÞffiffiffiffiffiffiffi
2!

p jðtÞ
�

�
Z
C
dtdt0jðtÞ
ðt� t0Þ e

�i!ðt�t0Þ

2!
jðt0Þ: (A15)

APPENDIX B: FREE THERMAL PROPAGATORS
AND PARTITION FUNCTION AT � � 0

In this Appendix we review some important aspects
regarding the canonical description of the free theory and
the different representations for free propagators in thermal
field theory at nonzero chemical potential, paying special
attention to the differences between the case of particle
number chemical potential and that of exactly conserved
charges such as the electric charge for complex scalar
fields.

Let us consider first the case of a free neutral scalar field
�ðxÞ. In that case, one can evaluate the partition function
and the propagator (two-point function) directly in the
complete set jN1; N2; . . .i, corresponding to eigenstates of
the Hamiltonian operator with N1 particles in state 1, N2

particles in state 2, and so on:

hN1; N2; . . . jN0
1; N

0
2; . . .i ¼ 	N1N

0
1
� 	N2N

0
2
� . . . ;

Ĥ0jN1; N2; . . .i ¼
�
N1E1 þ � � � þX1

i¼1

Ei

2

�

� jN1; N2; . . .i;
N̂jN1; N2; . . .i ¼ ðN1 þ N2 þ � � �ÞjN1; N2; . . .i;

(B1)

with
P

Ni ¼ N. For noninteracting bosons of mass m,

Ei �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ j ~pij2

p
, and the (infinite) term

P
iEi=2 is the

vacuum energy. As customary, we consider first the system
in a finite volume V ¼ L3, which we will later take to
infinity, so that spatial momenta are discretized as jpij ¼
�ni
L with integers ni and energy levels are labeled by ~n �
ðnx; ny; nzÞ. The free partition function reads then

~Z 0
� ¼ Y

~n

X1
N¼0

e��NðE~n��Þe��E~n=2 ¼ Y
~n

e��E~n=2

1� e��ðE~n��Þ ;

where the condition �< E~n must be satisfied for all ~n.
Thus, in the V ! 1 limit:

log ~Z0
� ¼ �V

Z d3 ~p

ð2�Þ3
�
�Ep

2
þ logð1� e��ðEp��ÞÞ

�
;

(B2)

where E2
p ¼ j ~pj2 þm2. Therefore, in the following we

must restrict to a chemical potential � � m (below the
Bose-Einstein condensation limit) to ensure the conver-
gence of the previous expressions.

In order to obtain the free particle propagator in the
canonical formalism, defined as the two-point function:

~GðxÞ � hT̂ �̂ðxÞ�̂ð0Þi�;�
� ~Z�1

� Trfe��ðĤ��N̂ÞT̂ �̂ðxÞ�̂ð0Þg; (B3)

where T̂ is the time-ordering operator, we expand the field
as customary in terms of creation and annihilation opera-
tors:

�̂ð ~xÞ ¼ 1

V

X
n

1ffiffiffiffiffiffiffiffiffi
2E~n

p ðâ ~ne
i2�~n� ~x=L þ ây~ne

�i2�~n� ~x=LÞ; (B4)

with commutation relation

½â ~n; â
y
~n0 � ¼ V	

~n; ~n0 : (B5)

The free Hamiltonian and the number operator are given
in terms of creation and annihilation operators as

Ĥ 0 ¼
X
~n

1

V
E~n

�
ây~n â ~n þ 1

2
V

�
; N̂ ¼ X

~n

1

V
ây~n â ~n:

(B6)

Now, the real time evolution of the field is given by

�̂ðt; ~xÞ � eiĤt�̂ð ~xÞe�iĤt with t 2 R. We will calculate the
trace in (B3) using�

1

V
ây~n â ~n

	
�;�

¼ 1

e�ðE~n��Þ � 1
� nðE~n ��Þ; (B7)

so that we get for the free propagator, after taking the V !
1 limit:

~GðxÞ ¼ 
ðtÞ ~G>ðxÞ þ 
ð�tÞ ~G<ðxÞ; (B8)

with

~G>ð<ÞðxÞ ¼
Z d3 ~p

ð2�Þ3 e
i ~p� ~x ~G>ð<Þðt; pÞ; (B9)

~G>ðt; pÞ ¼ 1

2Ep

½e�iEptð1þ nðEp ��ÞÞ

þ eiEptnðEp ��Þ�; (B10)

~G<ðt; pÞ ¼ 1

2Ep

½eiEptð1þ nðEp ��ÞÞ

þ e�iEptnðEp ��Þ�: (B11)

Note that the above propagators are obtained from the
� ¼ 0 ones by the following replacement in the distribu-
tion function:

nðxÞ ! ~npðxÞ � 1

e
~�px � 1

; (B12)

with
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~�p � �

�
1� �

Ep

�
: (B13)

Therefore, we have for instance ~npðEpÞ ¼ nðEp ��Þ
and the ~np function satisfie:

1þ ~npðxÞ þ ~npð�xÞ ¼ 0: (B14)

Thus, the free propagator satisfies the following KMS-
like periodicity condition in the mixed representation:

~G>ðt; pÞ ¼ ~G<ðtþ i ~�p; pÞ; (B15)

and in Fourier space we can write a spectral representation:

~G>ðp0; pÞ ¼ ½1þ ~npðp0Þ��ðp0; pÞ ~G<ðp0; pÞ
¼ e� ~�pp0 ~G>ðp0; pÞ ¼ ~npðp0Þ�ðp0; pÞ;

(B16)

where

�ðp0; pÞ ¼ 2�sgnðp0Þ	½ðp0Þ2 � E2
p� (B17)

is the free spectral function, which is independent of
temperature and chemical potential.

Now, using


ðtÞ ¼ i
Z 1

�1
dk0
2�

e�ik0t

k0 þ i�
; (B18)

with � ! 0þ, we can write for the propagator in (B8) in
momentum space:

~Gðp0; pÞ ¼ i

p2
0 � E2

p þ i�
þ 2�	ðp2

0 � E2
pÞnðjp0j ��Þ:

(B19)

Note that we have used ~npðEpÞ	ðp2
0 � E2

pÞ ¼
~npðjp0jÞ	ðp2

0 � E2
pÞ ¼ nðjp0j ��Þ	ðp2

0 � E2
pÞ and we

have chosen the ‘‘jp0j prescription’’ which, as explained
in the main text, guarantees the decoupling of the
imaginary-leg contribution to real-time Green functions.

The free propagators in (B10) and (B11) can be ex-
tended to imaginary times t ¼ �i� corresponding time
differences along the imaginary-time leg C4 in Fig. 1.

Thus, we define ~�Tð�; pÞ ¼ ~G>ð�i�; pÞ for � 
 0 and
~�Tð�; pÞ ¼ ~G<ð�i�; pÞ for � � 0. Now, if we try to con-
struct a Matsubara frequency representation in this case,
we have, from the mixed representation (B10) and using
(B12) and (B13):

~�Tð� 
 0; pÞ ¼ 1

2�i

I
C1[C2

ez�

e
~�pz � 1

1

z2 � E2
p

¼0��� ~�p 1
~�p

X
n

eið ~!nÞ

~!2
n þ E2

p

; (B20)

where theC1;2 contours are shown in Fig. 10, the black dots

on the imaginary axis being the ‘‘modified’’ Matsubara

frequencies ~!n ¼ 2�n= ~�p. A very important point here is

that the last step in the above equation is only valid for � 2
½0; ~�p�, otherwise the integrals along the circular arcs with
R ! 1 do not vanish. Thus, the Matsubara Fourier repre-
sentation is only valid in that interval, which is smaller than
½0; ��.
Carrying out the same procedure with ~�Tð� � 0; pÞ

using (B11) leads to the same modified Matsubara repre-

sentation for � 2 ½� ~�p; 0�. In fact, we see that the KMS-

like condition (B15) translates into the imaginary-time
propagator as

~� Tð�þ ~�p; pÞ ¼ ~�Tð�; pÞ; (B21)

so that this propagator does not satisfy the usual equilib-

rium KMS condition ~�Tð�þ �; pÞ ¼ ~�Tð�; pÞ.
At this point, it is instructive to compare the above free

propagators for chemical nonequilibrium with those ob-
tained when an exact conserved charge is present. As we
are going to see, there are crucial differences between the
two cases. For definiteness, we consider the electric charge
for the case of a complex scalar field and denote the
corresponding chemical potential by �Q. In that case, the

counterparts of (B10) and (B11) for the free propagator

GQðxÞ ¼ hT̂�̂yðxÞ�̂ð0Þi are [17]

G>
Qðt; pÞ ¼

1

2Ep

½e�iEptð1þ nðEp ��QÞÞ

þ eiEptnðEp þ�QÞ�; (B22)

G<
Qðt; pÞ ¼

1

2Ep

½eiEptð1þ nðEp þ�QÞÞ

þ e�iEptnðEp ��QÞ�: (B23)

Note that, unlike our previous case in (B10) and (B11),
the chemical potential enters now with opposite sign for
the positive and negative frequencies, which comes from
the opposite charge of particles and antiparticles, necessary
to maintain the chemical equilibrium imposed by charge

FIG. 10. Contours used to derive the Matsubara representation
of the free imaginary-time propagators. The black dots on the
imaginary axis denote the Matsubara frequencies and R ! 1.
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conservation. Because of this sign difference, the above
propagator satisfies now the following condition:

G>
Qðt; pÞ ¼ e���QG<

Qðtþ i�; pÞ; (B24)

i.e., in this case the KMS symmetry realizes simply as a
modification of the �Q ¼ 0 KMS boundary condition by a

constant�Q-dependent factor, which is a result completely

different from the previous case, cf., Eq. (B15), where the

loss of KMS involves the p-dependent ~�p, which cannot

be rewritten as a multiplicative factor:

~G>ðt; pÞ ¼ 1

2Ep

½e����e�iEpðtþi�ÞnðEp ���Þ

þ e���eiEpðtþi�Þð1þ nðEp ���ÞÞ�
� e���� ~G<ðtþ i�; pÞ: (B25)

Another way to arrive to the same conclusion is to derive
directly the periodicity relation from the thermal averages.
In the charged scalar case, it is crucial to use that fact that

the field is a charge eigenstate, i.e., ½Q̂; �̂� ¼ ��̂,

½Q̂; �̂y� ¼ �̂y [17]. This, together with charge conserva-

tion ½Q̂; Ĥ� ¼ 0 leads to

Tr ½�̂yðt� i�Þ�̂ð0Þe��ðĤ��QQ̂Þ�
¼ e���Q Tr½�̂ðtÞ�̂yð0Þe��ðĤ��QQ̂Þ�: (B26)

However, in the case of a real field and the number

operator, even though ½N̂; Ĥ� ¼ 0 in the free case,

½N̂; �̂� � 
�̂ which prevents the previous relation from
holding.

Defining now the imaginary-time propagators as above,
we get the same factor in the �Q case:

�Q
T ð�þ �;pÞ ¼ e���Q�Q

T ð�; pÞ: (B27)

In fact, it is not difficult to see that in the �Q case, this

simple form of KMS symmetry still allows for a well-
defined Matsubara IT frequency representation:

~�Q
T ð� 
 0; pÞ ¼ 1

2�i

I
C0
1[C0

2

ez�

e�ðzþ�QÞ � 1

1

z2 � E2
p

¼0���� 1

�

X
n

eið!nþi�QÞ

ð!n þ i�QÞ2 þ E2
p

; (B28)

where C0
12 correspond to the contours in Fig. 10 but with

the vertical line displaced to z ¼ ��Q (�Q <m) and the

dots in that line being now the standard Matsubara fre-
quencies !n ¼ 2�n=�. Therefore, in this case the ordi-

nary IT formalism is recovered for � 2 ½��;�� simply by
changing in the Feynman rules !n ! !n þ i�Q.

Most of the results shown in the main text can be written
in terms of the above thermal propagators evaluated at the
origin in position space and functions related to them.
From (B9)–(B11) we have (for � � m) at � ¼ t ¼ ~x ¼ 0:

~G>ð0Þ ¼ ~G<ð0Þ ¼ ~�Tð0Þ ¼ ~Gð0Þ
¼ ½ ~Gð0Þ�T¼�¼0 þ ~g1ðm; T;�Þ; (B29)

where the T ¼ � ¼ 0 contribution is ultraviolet divergent.
In dimensional regularization it is given by

½ ~Gð0Þ�T¼�¼0 ¼
Z dD�1p

ð2�ÞD�1

1

2Ep

¼ �½1� D
2�mD�2

ð4�ÞD=2
;

(B30)

while the T, �-dependent contribution ~g1 is finite. We are
following the same notation as in [31] so that ~g1 is the� �
0 extension of their function g1ðTÞ, to which it reduces for
� ¼ 0. We have

~g 1ðm; T;�Þ ¼ 1

2�2

Z 1

0
dp

p2

Ep

1

e�ðEp��Þ � 1
: (B31)

Note that in dimensional regularization one has, as in the
� ¼ 0 case,

½@2� �r2�~�Tð�; ~xÞj�¼ ~x¼0 ¼ m2 ~�Tð0Þ;
h ~Gðt; ~xÞjt¼ ~x¼0 ¼ �m2 ~Gð0Þ;

(B32)

and @� ~Gð0Þ ¼ @��Tð0Þ ¼ 0.

Let us also define, following again the notation in [31]:

~g 0ðm; T;�Þ ¼ � T

�2

Z 1

0
dpp2 log½1� e��ðEp��Þ�;

(B33)

so that, taking into account that @Ep=@m
2 ¼ 1=ð2EpÞ, we

can write the free partition function (B32) separating its
divergent contribution in dimensional regularization as

log ~Z0
� ¼ �V

2

�
�½� D

2�mD

ð4�ÞD=2
þ ~g0ðm; T;�Þ

�
: (B34)

Finally, note that the functions ~g0 and ~g1 satisfy a similar
relation as in [31]:

~g 1ðm; T;�Þ ¼ � @

@m2
g0ðm; T;�Þ: (B35)
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