Publication:
Nonclassicality in the statistics of noncommuting observables: Nonclassical states are more compatible than classical states

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-07-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study nonclassicality in the product of the probabilities of noncommuting observables. We show that within the quantum theory, nonclassical states can provide larger probability product than classical states, so that nonclassical states approach the nonfluctuating states of the classical theory more closely than classical states. This is particularized to relevant complementary observables such as conjugate quadratures, phase and number, quadrature and number, and orthogonal angular momentum components.
Description
©2011 American Physical Society. A. L. acknowledges Dr. A. Rivas for enlightening comments. This work has been supported by Project No. FIS2008-01267 of the Spanish Direccion General de Investigacion del Ministerio de Ciencia e Innovacion, and by Project QUITEMAD S2009-ESP-1594 of the Consejeria de Educacion de la Comunidad de Madrid.
Keywords
Citation
[1] L.Mandel and E.Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, England, 1995); M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997); H.-A. Bachor, A Guide to Experiments in Quantum Optics (Wiley, Weinheim, Germany, 1998); C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, England, 2005); V. V. Dodonov, J. Opt. B 4, R1 (2002). [2] A. Rivas and A. Luis, Phys. Rev. A 79, 042105 (2009). [3] A. Luis, Phys. Rev. A 82, 024101 (2010). [4] D. Martín and A. Luis, Phys. Rev. A 82, 033829 (2010). [5] R. J. Glauber, Phys. Rev. 131, 2766 (1963); H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977); R. Short and L. Mandel, ibid. 51, 384 (1983); R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, ibid. 55, 2409 (1985); L. Mandel, Phys. Scr., T 12, 34 (1986); M. Hillery, Phys. Rev. A 35, 725 (1987); C. T. Lee, ibid. 44, R2775 (1991); 45, 6586 (1992); N. Lütkenhaus and S. M. Barnett, ibid. 51, 3340 (1995); D. N. Klyshko, Phys. Lett. A 213, 7 (1996); W. Vogel, Phys. Rev. Lett. 84, 1849 (2000); Th. Richter andW. Vogel, ibid. 89, 283601 (2002); E. Shchukin, Th. Richter, and W. Vogel, Phys. Rev. A 71, 011802(R) (2005); E. V. Shchukin and W. Vogel, ibid. 72, 043808 (2005); A. Zavatta, V. Parigi, and M. Bellini, ibid. 75, 052106 (2007); R. Alicki and N. Van Ryn, J. Phys. A 41, 062001 (2008); W. Vogel, Phys. Rev. Lett. 100, 013605 (2008); T. Kiesel, W. Vogel, V. Parigi, A. Zavatta, and M. Bellini, Phys. Rev. A 78, 021804(R) (2008);T. Kiesel,W.Vogel, B. Hage, J. DiGuglielmo, A. Samblowski, and R. Schnabel, ibid. 79, 022122 (2009); A. Miranowicz, M. Bartkowiak, X.Wang, Y. X. Liu, and F. Nori, ibid. 82, 013824 (2010); A. Mari, K. Kieling, B. M. Nielsen, E. S. Polzik, and J. Eisert, Phys. Rev. Lett. 106, 010403 (2011). [6] A. Luis, Phys. Rev. Lett. 88, 230401 (2002). [7] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); R. J. Glauber, Phys. Rev. 131, 2766 (1963). [8] J. G. Kirkwood, Phys. Rev. 44, 31 (1933); P. A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945); H.-W. Lee, Phys. Rep. 259, 147 (1995). [9] H. Margenau and R. N. Hill, Prog. Theor. Phys. 26, 722 (1961); C. L. Mehta, J. Math. Phys. 5, 677 (1964); L. Cohen, ibid. 7, 781 (1966); K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969); 177, 1882 (1969); G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 (1970); 2, 2187 (1970); 2, 2206 (1970). [10] J. A. Vaccaro, Opt. Commun. 113, 421 (1995); Phys. Rev. A 52, 3474 (1995); J. A. Vaccaro and D. T. Pegg, ibid. 41, 5156 (1990); L. M. Johansen, Phys. Lett. A 329, 184 (2004); J. Opt. B 6, L21 (2004); L. M. Johansen and A. Luis, Phys. Rev. A 70, 052115 (2004); A. Luis, ibid. 73, 063806 (2006). [11] A. Luis, Phys. Rev. A 80, 034101 (2009). [12] W. Schleich and J. A. Wheeler, Nature (London) 326, 574 (1987); J. Opt. Soc. Am. B 4, 1715 (1987); J. Peřina and J. Bajer, Phys. Rev. A 41, 516 (1990). [13] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968); D. T. Pegg and S. M. Barnett, J. Mod. Opt. 44, 225 (1997), Special issue on quantum phase and phase dependent measurements, Phys. Scr. T 48, (1993), edited byW. Schleich and S. M. Barnett; A. Luis and L. L. Sánchez-Soto, in: E. Wolf (Ed.) Progress in Optics, Vol. 41 (Elsevier, Amsterdam, 2000), p. 421; Phys. Rev. A 48, 4702 (1993); R. Lynch, Phys. Rep. 256, 367 (1995); A. Luis, L. L. Sánchez-Soto, and R. Tanaś, Phys. Rev. A 51, 1634 (1995); A. Luis and L. L. Sánchez-Soto, ibid. 53, 495 (1996); R. Tanaś, A. Miranowicz, and T. Gantsog, in: E. Wolf (Ed.) Progress in Optics, Vol. 35 (Elsevier, Amsterdam, 1996), p. 355; V. Peřinová, A. Lukš, and J. Peřina, Phase in Optics (World Scientific, Singapore, 1998). [14] E. C. Lerner, H. W. Huang, and G. E. Walters, J. Math. Phys. 11, 1679 (1970); A. Vourdas, Phys. Rev. A 45, 1943 (1992); E. C. G. Sudarshan, Int. J. Theor. Phys. 32, 1069 (1993); A. Vourdas, Phys. Scr., T 48, 84 (1993); A. Vourdas, C. Brif, and A. Mann, J. Phys. A 29, 5887 (1996); A. Vourdas, J. Phys. A 39, R65 (2006); C. C. Gerry and T. Bui, Phys. Rev. A 80, 033831 (2009). [15] A. Luis, Phys. Lett. A 354, 71 (2006). [16] M. Freyberger and W. Schleich, Phys. Rev. A 49, 5056 (1994); A. Aragᾶo, A. T. Avelar, and B. Baseia, Phys. Lett. A 331, 366 (2004); A. Aragᾶo, P. B. Monteiro, A. T. Avelar, and B. Baseia, ibid. 337, 296 (2005). [17] W. Schleich, R. J. Horowicz, and S. Varro, Phys. Rev. A 40, 7405 (1989). [18] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972); O. Giraud, P. Braun, and D. Braun, ibid. 78, 042112 (2008).
Collections