Publication:
A rock magnetic profile through the ejecta flap of the Lockne impact crater (central Sweden) and implications for the impact excavation process

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The well-documented, well-preserved, and well-exposed Lockne crater is a reference crater for marine-target impacts on Earth. The large amount of data allows detailed analysis of the cratering and modification processes. A unique feature of Lockne as compared with other similar craters is its pristine ejecta layer. Here, we provide the first complete lithological description coupled with an analysis of the rock magnetic properties of the Lockne-9 core drilled through the ejecta flap. Low-field bulk magnetic susceptibility, magnetic hysteresis, isothermal remanent magnetization curves (IRM), and the corresponding model of the coercivity spectra, backfield IRM, and thermomagnetic curves are used to fully characterize the magnetic mineralogy (i.e., pseudo-single domain (PSD) magnetite and pyrite). Variation of the magnetic properties with depth reveals a characteristic maximum in the magnetic susceptibility and magnetization within the crystalline ejecta. The magnetic properties of rocks affected by the impact show a slight weakening in the coercivity of magnetic minerals in comparison with rocks not affected by the impact Altogether, this suggests to us that the high magnetization zone already existed before the impact event took place. Therefore, it can be inferred that during the cratering process, the Lockne ejecta was repositioned en masse from the central part of the crater in the form of an ejecta flap. This stands in contrast to the standard ballistic emplacement model wherein individual particles move in an ejecta curtain.
Description
© 2014 Elsevier. The work by I. Melero-Asensio and J. Ormö is partially supported by grants AYA2008-03467/ESP and AYA2011-24780-ESP. F. Martín-Hernández was partially funded by a Ramón y Cajal contract, all from the Spanish Ministry of Economy Competitiveness. The authors are grateful for the laboratory assistance by S. Guerrero-Suárez and V. Villasante from the UCM and M. P. Martín-Redondo and M. T. Rodríguez-Sampedro from the CAB. We acknowledge Professor David T. King Jr. at the Auburn University (AL, USA) for his help with the linguistics. We appreciate the helpful comments by the reviewers that greatly improved the paper.
Unesco subjects
Keywords
Citation
Bertin, E.P., 1975. Principles and practice of X-ray spectrometric analy sis. Plenum Press,New York. Butler, R.F., 1992. Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific Publications. Day, R., Fuller, M., Schmidt, V., 1977. Hysteresis properties of titanomagnetites: grainsize and compositional dependence. Phys. Earth Planet. Inter. 13, 260–267. Dekkers, M., 1988. Magnetic behavior of natural goethite during thermal demagnetization. Geophys. Res. Lett. 15, 538–541. unlop, ., O zdemir, O., 1997. Rock magnetism: fundamentals and frontiers, Cambridge Studies in Magnetism. Cambridge University Press, Cambridge. Dunlop, D.J., 2002a. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 1978–2012 107, EPM–4. Dunlop, D.J., 2002b. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. Solid Earth 1978–2012 107, EPM–5. Dunlop, D.J., 2002c. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 1978–2012 107, EPM–4. Egli, R., 2004a. Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments. Stud. Geophys. Geod. 48, 391–446. Egli, R., 2004b. Characterization of individual rock magnetic components by analysis of remanence curves.: 2. Fundamental properties of coercivity distributions. Phys. Chem. Earth Parts ABC 29, 851–867. Elbra, T., Kontny, A., Pesonen, L., 2009. Rock-magnetic properties of the ICDP-USGS Eyreville core, Chesapeake Bay impact structure, Virginia, USA. ICDP-USGS Deep Drill. Proj. Chesap. Bay Impact Struct. Results Eyreville Core Holes Geol. Soc. Am. Spec. Pap. 458. Frisk, Å.M., Ormö, J., 2007. Facies distribution of post-impact sediments in the Ordovician Lockne and Tvären impact craters: Indications for unique impactgenerated environments. Meteorit. Planet. Sci. 42, 1971–1984. Heslop, D., Dekkers, M.J., Kruiver, P.P., Van Oorschot, I.H.M., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation–maximization algorithm. Geophys. J. Int. 148, 58–64. Heslop, D., McIntosh, G., Dekkers, M.J., 2004. Using time- and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int. 157, 55–63. Högström, A.E., Sturkell, E., Ebbestad, J.O.R., Lindström, M., Ormö, J., 2010. Concentric impact structures in the Palaeozoic of Sweden–the Lockne and Siljan craters. GFF 132, 65–70. Jasonov, P., Nourgaliev, D., Burov, B., Heller, F., 1998. A modernized coercivity spectrometer. Geol. Carpathica 49, 224–226. Kruiver, P.P., Dekkers, M.J., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 189, 269–276. Lindgren, P., Parnell, J., Norman, C., Mark, D.F., Baron, M., Ormö, J., Sturkell, E., Conliffe, J., Fraser, W., 2007. Formation of uranium-thorium-rich bitumen nodules in the Lockne impact structure, Sweden: A mechanism for carbon concentration at impact sites. Meteorit. Planet. Sci. 42, 1961–1969. Lindström, M., Ormö, J., Sturkell, E., Dalwigk, I., 2005. The Lockne Crater: Revision and Reassessment of Structure and Impact Stratigraphy, in: Koeberl, C., Henkel, H. (Eds.), Impact Tectonics, Impact Studies. Springer Berlin Heidelberg, pp. 357–388. Lindström, M., Shuvalov, V., Ivanov, B., 2005. Lockne crater as a result of marinetarget oblique impact. Planet. Space Sci. 53, 803–815. Louzada, K.L., Stewart, S.T., Weiss, B.P., Gattacceca, J., Bezaeva, N.S., 2010. Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust. Earth Planet. Sci. Lett. 290, 90–101. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 17, 159–162. Melosh, H.J., 1989. Impact cratering: a geologic process, Oxford monographs on geology and geophysics. Oxford University Press. Moskowitz, B.M., 1981. Methods for estimating Curie temperatures of titanomaghemites from experimental< i> Js-T</i> data. Earth Planet. Sci. Lett. 53, 84–88. O’Reilly, W., 1976. Magnetic minerals in the crust of the Earth. Rep. Prog. Phys. 39, 857. Ormö, J., Hill, A.C., Self-Trail, J.M., 2010. A chemostratigraphic method to determine the end of impact-related sedimentation at marine-target impact craters (Chesapeake Bay, Lockne, Tvären). Meteorit. Planet. Sci. 45, 1206–1224. Ormö, J., Lindström, M., 2000. When a cosmic impact strikes the sea bed. Geol. Mag. 137, 67–80. Ormö, J., Lindström, M., 2005. New Drill-Core Data from the Lockne Crater, Sweden: The Marine Excavation and Ejection Processes, and Post-Impact Environment, in: 36th Annual Lunar and Planetary Science Conference. p. 1124. Özdemir, Ö., Dunlop, D.J., 2000. Intermediate magnetite formation during dehydration of goethite. Earth Planet. Sci. Lett. 177, 59–67. Rochette, P., 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J. Struct. Geol. 9, 1015–1020. Shuvalov, V., Ormö, J., Lindström, M., 2005. Hydrocode Simulation of the Lockne Marine Target Impact Event, in: Koeberl, C., Henkel, H. (Eds.), Impact Tectonics, Impact Studies. Springer Berlin Heidelberg, pp. 405–422. Sturkell, E., Lindström, M., 2004. The target peneplain of the Lockne impact. Meteorit. Planet. Sci. 39, 1721–1731. Sturkell, E., Ormö, J., Lepinette, A., 2013. Early modification stage (preresurge) sediment mobilization in the Lockne concentric, marine-target crater, Sweden. Meteorit. Planet. Sci. 48, 321–338. Sturkell, E.F., Ormö, J., 1997. Impact-related clastic injections in the marine Ordovician Lockne impact structure, Central Sweden. Sedimentology 44, 793–804. Sturkell, E.F., Ormö, J., 1998. Magnetometry of the marine, Ordovician Lockne impact structure, Jämtland, Sweden. J. Appl. Geophys. 38, 195–207. Sturkell, E.F.F., 1998. The marine Lockne impact structure, Jämtland, Sweden: a review. Geol. Rundsch. 87, 253–267. Sturkell, E.F.F., Ekelund, A., Törnberg, R., 1998. Gravity modelling of Lockne, a marine impact structure in Jämtland, central Sweden. Tectonophysics 296, 421 – 435. Törnberg, R., Sturkell, E.F.F., 2005. Density and magnetic susceptibility of rocks from the Lockne and Tvären marine impact structures. Meteorit. Planet. Sci. 40, 639–651.
Collections