Publication:
Nonclassicality in phase by breaking classical bounds on statistics

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-09-23
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We derive upper bounds on the statistics of phase and phase difference that are satisfied by all classical states. They are obtained by finding the maximum projection of classical states on phase states. For a single-mode phase, meaningful bounds are obtained conditioned to a fixed mean number of photons. We also derive classical bounds for the projection on phase-coherent states, discussing their relation with phase-state bounds within the context of analytic representations. We find states with nonclassical phase properties disclosed by the violation of these classical bounds. These are quadrature and SU(2) squeezed states and phase-coherent states.
Description
©2010 The American Physical Society. A.L. acknowledges support from Project No. FIS2008-01267 of the Spanish Direccion General de Investigacion del Ministerio de Ciencia e Innovacion, and from Project No. QUITEMAD S2009-ESP-1594 of the Consejeria de Educacion de la Comunidad de Madrid.
Keywords
Citation
[1] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, England, 1995); M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, England, 1997); H.-A. Bachor, A Guide to Experiments in Quantum Optics (Wiley,Weinheim, Germany, 1998); C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, Cambridge, England, 2005). [2] A. Rivas and A. Luis, Phys. Rev. A 79, 042105 (2009). [3] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); R. J. Glauber, Phys. Rev. 131, 2766 (1963). [4] L. Mandel, Phys. Scr., T 12, 34 (1986); M. Hillery, Phys. Rev. A 35, 725 (1987); C. T. Lee, ibid. 44, R2775 (1991); 52, 3374 (1995); M. G. Benedict and A. Czirják, ibid. 60, 4034 (1999); V. V. Dodonov, O. V. Man’ko, V. I. Man’ko, and A. Wünsche, J. Mod. Opt. 47, 633 (2000); W. Vogel, Phys. Rev. Lett. 84, 1849 (2000); P. Marian, T. A. Marian, and H. Scutaru, ibid. 88, 153601 (2002); J. M. C. Malbouisson and B. Baseia, Phys. Scr. 67, 93 (2003); V. V. Dodonov and M. B. Renó, Phys. Lett. A 308, 249 (2003); P. Marian, T. A. Marian, and H. Scutaru, Phys. Rev. A 69, 022104 (2004); J. K. Asb´oth, J. Calsamiglia, and H. Ritsch, Phys. Rev. Lett. 94, 173602 (2005); A. Miranowicz, M. Bartkowiak, X. Wang, Y. X. Liu, and F. Nori, Phys. Rev. A 82, 013824 (2010). [5] I. Afek, O. Ambar, and Y. Silberberg, Phys. Rev. Lett. 104, 123602 (2010); A. Rivas and A. Luis, ibid. 105, 010403 (2010). [6] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968); D. T. Pegg and S. M. Barnett, J. Mod. Opt. 44, 225 (1997); W. Schleich and S.M. Barnett, Phys. Scr., T 48 (1993); R. Lynch, Phys. Rep. 256, 367 (1995); R. Tanaś, A. Miranowicz, and T. Gantsog, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 1996), Vol. 35, p. 355; V. Peřinová, A. Lukš, and J. Peřina, Phase in Optics (World Scientific, Singapore, 1998). [7] A. Luis and L. L. Sánchez-Soto, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2000), Vol. 41, p. 421; Phys. Rev. A 48, 4702 (1993). [8] A. Luis, L. L. Sánchez-Soto, and R. Tanaś, Phys.Rev.A51, 1634 (1995); A. Luis and L. L. Sánchez-Soto, ibid. 53, 495 (1996). [9] C. C. Gerry and T. Bui, Phys. Rev. A 80, 033831 (2009). [10] E. C. G. Sudarshan, Int. J. Theor. Phys. 32, 1069 (1993). [11] A. Vourdas, Phys. Scr., T 48, 84 (1993). [12] E. C. Lerner, H. W. Huang, and G. E. Walters, J. Math. Phys. 11, 1679 (1970). [13] A. Vourdas, C. Brif, and A. Mann, J. Phys. A 29, 5887 (1996); A. Vourdas, ibid. 39, R65 (2006). [14] A. Vourdas, Phys. Rev. A 45, 1943 (1992). [15] W. Schleich and J. A. Wheeler, J. Opt. Soc. Am. B 4, 1715 (1987);W. Schleich, R. J. Horowicz, and S. Varro, Phys. Rev. A 40, 7405 (1989). [16] C. M. Caves, Phys. Rev. D 23, 1693 (1981). [17] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994). [18] A. Luis, Phys. Lett. A 354, 71 (2006). [19] E. Bagan, A. Monras, and R. Muñoz-Tapia, Phys. Rev. A 78, 043829 (2008); M. Aspachs, J. Calsamiglia, R. Muñoz-Tapia, and E. Bagan, ibid. 79, 033834 (2009); S. Olivares and M. G. A. Paris, J. Phys. B 42, 055506 (2009). [20] J. Schwinger, Quantum Theory of Angular Momentum (Academic, New York, 1965). [21] A. Vourdas, Phys. Rev. A 41, 1653 (1990). [22] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972); O. Giraud, P. Braun, and D. Braun, ibid. 78, 042112 (2008). [23] A. J. Leggett and F. Sols, Found. Phys. 21, 353 (1991); Y. Castin and J. Dalibard, Phys. Rev. A 55, 4330 (1997); A. Sinatra and Y. Castin, Eur. Phys. J. D 4, 247 (1998). [24] A. M. Rey, L. Jiang, and M. D. Lukin, Phys. Rev. A 76, 053617 (2007). [25] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992); M. Kitagawa and M. Ueda, ibid. 47, 5138 (1993); C. Brif and A. Mann, ibid. 54, 4505 (1996); A. Luis and N. Korolkova, ibid. 74, 043817 (2006). [26] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993); M. Hillery, M. Zou, and V. Bužek, Quantum Semiclass. Opt. 8, 1041 (1996); P. Bouyer and M. A. Kasevich, Phys. Rev. A 56, R1083 (1997).
Collections