Publication:
Effects of interface states on the transport properties of all-oxide La_(0.8)Sr_(0.2)CoO_(3)/SrTi_(0.99)Nb_(0.01)O_(3) p-n heterojunctions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-02-25
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Electrical transport properties of heteroepitaxial p-n junctions made of La_(0.8)Sr_(0.2)CoO_(3) and SrTi_(0.99)Nb_(0.01)O_(3) were studied. Junctions display highly rectifying current-voltage characteristics over a wide temperature range (20–300 K). Two distinct transport mechanisms are identified: tunneling assisted by interface states at T<130 K and diffusion/recombination at higher temperatures. Capacitance-voltage characteristics are used to determine the junction built-in potential at different frequencies. A capacitance relaxation is found due to charge trapping at interface states. Interface states, which deeply affect transport, are discussed in connection to charge-transfer processes related to the polarity mismatch at the interface.
Description
© 2008 American Institute of Physics. The work at UCM was supported by MEC MAT 2005—06024 C02 and work at UMN was supported by NSF DMR.
Unesco subjects
Keywords
Citation
1) A. Yamamoto, A. Sawa, H. Akoh, M. Kawasaki, Y. Tokura, Appl. Phys. Lett., 90, 112104, 2007. 2) C. Mitra, P. Raychaudhuri, G. Kobernik, K. Dorr, K.-H. Muller, L. Schultz, R. Pinto, Appl. Phys. Lett., 79, 2408, 2001. 3) J. Zhang, H. Tanaka, T. Kawai, Appl. Phys. Lett., 80, 4378, 2002. 4) Y. W. Xie, J. R. Sun, D. J. Wang, S. Liang, W. M. Lu, B. G. Shen, Appl. Phys. Lett., 90, 192903, 2007. 5) M. Nakamura, A. Sawa, H. Sato, H. Akoh, M. Kawasaki, Y. Tokura, Phys. Rev. B, 75, 155103, 2007. 6) H. Tanaka, J. Zhang, T. Kawai, Phys. Rev. Lett., 88, 027204, 2001. 7) N. Nakagawa, M. Asai, Y. Mukunoki, T. Susaki, H. Y. Hwang, Appl. Phys. Lett., 86, 082504, 2005. 8) T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, Y. Tokura, Phys. Rev. B, 75, 165101, 2007. 9) H. Katsu, H. Tanaka, T. Kawai, J. Appl. Phys. 90, 4578, 2001. 10) A. Sawa, A. Yamamoto, H. Yamada, T. Fujii, M. Kawasaki, J. Matsuno, Y. Tokura, Appl. Phys. Lett., 90, 252102, 2007. 11) Y. Kozuka, T. Susaki, H. Y. Hwang, Appl. Phys. Lett., 88, 142111, 2006. 12) T. Arima, Y. Tokura, J. B. Torrance, Phys. Rev. B, 48, 17006, 1993. 13) J. Wu, C. Leighton, Phys. Rev. B, 67, 174408, 2003. 14) M. A. Torija, M. Sharma, C. Leighton, unpublished. 15) A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett., 86, 112508, 2005. 16) S. M. Sze, Semiconductor Devices, Physics and Technology, 1st ed., Wiley, New York, 1985. 17) T. Susaki, N. Nakagawa, H. Y. Hwang, Phys. Rev. B, 75, 104409, 2007. 18) S. Okamoto, A. J. Millis, Nature London, 428, 630, 2004. 19) A. Ohtomo, H. Y. Hwang, Nature London, 427, 423, 2004.
Collections