Publication:
Nonequilibrium chiral perturbation theory and pion decay functions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-03-11
Authors
Galán González, V.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier science
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We extend chiral perturbation theory to study a meson gas out of thermal equilibrium. Assuming that the system is initially in equilibrium at T-i < T-c and working within the Schwinger-Keldysh contour technique, we define consistently the time-dependent temporal and spatial pion decay functions, the counterparts of the pion decay constants, and calculate them to next to leading order. The link with curved space-time QFT allows to establish nonequilibrium renormalisation. The short-time behaviour and the applicability of our model to a heavy-ion collision plasma are also discussed in this work.
Description
© 1999 Elsevier Science B.V. We are grateful to T. Evans and R. Rivers for countless and fruitful discussions, as well as to R.F. Alvarez-Estrada, A. Dobado and A.L. Maroto for providing useful references and comments. A.G.N wishes to thank the Imperial College group for their kind hospitality during his stay there and has received financial support through a postdoctoral fellowship of the Spanish Ministry of Education and CICYT, Spain, project AEN97-1693.
Unesco subjects
Keywords
Citation
[1] S. Weinberg, Physica A 96 (1979) 327; J. Gasser, H. Leutwyler, Ann. Phys. (NY) 158 (1984) 142; Nucl. Phys. B 250 (1985) 465. [2] A. Dobado, A. Gómez Nicola, A. López-Maroto, J.R. Pelaez, Effective lagrangians for the Standard Model, Springer, 1997, and references therein. [3] F. Wilczek, Int. J. Mod. Phys. 7 (1992) 3911. [4] A. Bochkarev, J. Kapusta, Phys. Rev. D 54 (1996) 4066. [5] J. Gasser, H. Leutwyler, Phys. Lett. B 184 (1987) 83. [6] P. Gerber, H. Leutwyler, Nucl. Phys. B 321 (1989) 387. [7] A. Anselm, Phys. Lett. B 217 (1989) 169; A. Anselm, M. Ryskin, Phys. Lett. B 226 (1991) 482. [8] K. Rajagopal, F. Wilczek, Nucl. Phys. B 399 (1993) 395. [9] D. Boyanowsky, H.J. de Vega, R. Holman, Phys. Rev. D 51 (1995) 734. [10] D. Boyanowsky et al., Phys. Rev. D 56 (1997) 3929. [11] A.J. Gill, R.J. Rivers, Phys. Rev. D 51 (1995) 6949. [12] F. Cooper, Y. Kluger, E. Mottola, J.P. Paz, Phys. Rev. D 51 (1995) 2377; M.A. Lampert, J.F. Dawson, F. Cooper, Phys. Rev. D 54 (1996) 2213. [13] A. Barducci et al., Phys. Lett. B 369 1996 23. [14] R. Baier et al., Phys. Rev. D 56 1997 2548, 4344; M. Le Bellac, H. Mabilat, Z. Phys. C 75 (1997) 137. [15] J. Schwinger, J. Math. Phys. 2 (1961) 407; L.V. Keldysh, Sov. Phys. JETP 20 (1965) 1018. 16] K.C. Chou, Z.B. Sou, B.L. Hao, L. Yu, Phys. Rep. 118 (1985) 1. [17] G. Semenoff, N. Weiss, Phys. Rev. D 31 (1985) 689. [18] D. Boyanowsky, D.S. Lee, A. Singh, Phys. Rev. D 48 (1993) 800. [19] M. Le Bellac, Thermal Field Theory, Cambridge U.P., 1996. [20] A. Gómez Nicola, work in progress. [21] N. Birell, P. Davies, Quantum Fields in Curved Space, Cambridge U.P., 1982. [22] J.F. Donoghue, H. Leutwyler, Z. Phys. C 52 1991 343. [23] R.D. Pisarski, M. Tytgat, Phys. Rev. D 54 (1996) R2989.
Collections