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Abstract

We show how the unitarized description of pion nucleon scattering within Heavy Baryon Chiral Perturbation Theory can
be considerably improved, by a suitable reordering of the expansion over the nucleon mass. Within this framework, the D

resonance and its associated pole can be recovered from the chiral parameters obtained from low-energy determinations. In
addition, we can obtain a good description of the six S and P wave phase shifts in terms of chiral parameters with a natural
size and compatible with the Resonance Saturation Hypothesis. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 11.10.St; 11.30.Rd; 11.80.Et; 13.75.Lb; 14.40.Cs; 14.40.Aq
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1. Introduction

The modern way to incorporate chiral symmetry
and departures from it in low energy hadron dynam-

Ž .ics, is by means of Chiral Perturbation Theory ChPT
w x1 . Being an effective Lagrangian approach all the
detailed information on higher energies or underly-
ing microscopic dynamics is effectively encoded in
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DGES PB98 1367 and by DGICYT under contracts AEN97-1693
and PB98-0782.
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Ž .some low energy coefficients LEC which have to
be determined experimentally. For processes involv-
ing only pseudoscalar mesons the expansion parame-

2 Ž .2ter is p r 4p F with p their four momentum and
w xF the weak pion decay constant 1 . Of course, this

expansion works better in the threshold region,
breaking down at higher energies where the violation
of unitarity becomes more and more severe. How-
ever, it has been shown that this applicability region
can be extended by means of unitarization methods,
describing remarkably well meson-meson scattering

w xand its light resonances up to almost 1.2 GeV 2,3 .
In addition, it has been shown that the predicted
unitarized amplitudes can reproduce the threshold
region, and provide definite theoretical central values
and error estimates of the phase-shifts away from

w xthreshold and up to about 1 GeV 4 .
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Baryons can also be included as explicit degrees
of freedom if they are treated as heavy particles in a

w xcovariant framework 5 called Heavy Baryon Chiral
Ž . w xPerturbation Theory HBChPT 6–8 . In this case,

the expansion to order Ns1,2,3, . . . is written in
terms of contributions of the form e Nr
Ž 2 l Nq1y2 l. wŽ . xF M , where ls1, . . . , Nq1 r2 , and M
is the baryon mass. The quantity e is a generic
parameter with dimensions of energy built up in
terms of the pseudoscalar momenta and the velocity

m Ž 2 .Õ Õ s1 and off-shellness k of the baryons. The
( (

latter is defined from p sMÕqk, where p and MB B

are the baryon four momentum and its mass at
lowest order in HBChPT, respectively.

Within HBChPT p N scattering, has been calcu-
w x 1lated up to third order 10,11 so far . In general, it is

found that the HBChPT convergence is not as good
Ž w xas that of pure ChPT see remarks in Ref. 10 and

.also below . Therefore, any attempt to unitarize this
amplitude based on the increasing smallness of higher
order terms, may formally reproduce HBChPT se-
ries but will likely fail numerically to describe the
corresponding phase shifts even in the threshold
region. Hence, any unitarization method should take
into this slow convergence.

Unitarization methods have also been applied to
p N scattering in the literature. Already in the seven-
ties Pade approximants had been used to unitarize´

w xsimple phenomenological models 12 , and a more
systematic approach based on an effective La-
grangian formalism was called for. In addition, sev-
eral relativistic phenomenological models exist which
unitarize tree level amplitudes with the K-matrix
method providing a reasonably good description of

w x )p N scattering 13 . More recently, the D and N
resonances have also been considered as explicit

w xdegrees of freedom within HBChPT 14–16 . This
requires the introduction of new parameters into the
Chiral Lagrangian.

In contrast, the unitarization via the Inverse Am-
Ž . w xplitude Method IAM 2 does not introduce new

parameters. However, when applied to p N scattering
w x17 , considering the higher orders to be increasingly
small, the LEC turned out to be very different from

1 After submitting this work the HBChPT fourth order result
w xhas appeared in the literature 26 .

w xthose found within HBChPT 10 since they absorb
higher order contributions which are not negligible.

w xNevertheless, in 17 it was also shown that the
Ž .D 1232 can be reproduced with the IAM using
Ž 2 .O p parameters constrained to lie within the range

of values of Resonance Saturation, although the re-
Ž 3.sulting O p parameters are still very unnatural.

This situation is somewhat disappointing, since Padé
approximants, which are similar to the IAM, together
with simple phenomenological models, provided
good descriptions of p N scattering.

Ž 3.In this work we show how the O p HBChPT
series can be reordered and the IAM modified, in

. .order to i implement exact unitarity, ii comply with
.HBChPT at threshold and iii describe the D reso-

nance without introducing additional parameters.

2. Partial wave amplitudes

Customarily, low-energy p N scattering is de-
Žscribed in terms of partial waves see, for instance

w x.Refs 10,18 . We will rely heavily on the results in
w xRef. 10 , where the third order HBChPT expressions

where first obtained. However, in that work the full
nucleon mass dependence has been retained, causing
some order mixing. For our purposes, and in order to

Ž .keep track of perturbative unitarity see below , we
have preferred to further expand the partial waves in
terms of 1rM or 1rF 2. That is, we only keep the

Ž 2 . Ž . Ž 2 Ž 2 .. Žpure O erF first order , O e r F M second
. Ž 3 4. Ž 3 Ž 2 2 ..order as well as the O e rF and O e r F M

Ž .third order terms. One thus gets the following
expansion,

f " s f Ž1. "q f Ž2. "q f Ž3. "q PPP , 1Ž .l " l " l " l "

which thus coincide with the first, second and third
w xorders in 11 , where the full nucleon mass depen-

dence was not retained. However, we also separate
these contributions in

m v
Ž1. " Ž1 ,1. "f s t ,l " l "2 ž /mF

m2 v
Ž2. " Ž1 ,2. "f s t ,l " l "2 ž /mF M

m3 v m3 v
Ž3. " Ž3 ,3. " Ž1 ,3. "f s t q t , 2Ž .l " l " l "4 2 2ž / ž /m mF F M
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where t Žn,m. " are dimensionless functions of thel "

dimensionless variable vrm, independent of F, M
and m. The analytical expressions are too long to be
displayed here, but can be easily obtained starting

w xfrom Ref. 10 . The convenience of the double super-
script notation will be explained below; nq1 indi-
cates the power in 1rF and m the total order in the
HBChPT counting. The unitarity condition Im f y1sl "

yq becomes in perturbation theory

Im t Ž1,1. "s Im t Ž1,2. "s Im t Ž1,3. "s0, 3Ž .l " l " l "

q
2Ž3 ,3. " Ž1 ,1. "< <Im t s t . 4Ž .l " l "m

The equivalent of the last equation above for the f
amplitudes is not satisfied exactly if the nucleon
mass dependence is retained through a redefinition

Žw x. Žof the nucleon field as in Ref. 10 see, for in-
w x w x.stance, comments in 11 and 17 , although, of

course, the corrections are just higher order in
HBChPT. These exact relations for the perturbative
contributions will be very convenient later on, and,
as we have commented above, that is the reason why
we have preferred to expand the amplitudes as in Eq.
Ž .1 .

The scattering lengths a" and effective rangesl,"

b" are defined byl,"

Re f "sq2 l a" qq2 b" q PPP . 5Ž .Ž .l ," l ," l ,"

Ž .Obviously, the expansion of Eq. 2 carries over to
the threshold parameters, a" and b" , which wel," l,"

will use next to illustrate the slow low energy con-
vergence of the HBChPT series.

Throughout this paper we use Fs92.4 MeV, M
s938.27 MeV, ms139.57 MeV and g s1.26.A

Concerning the LEC , there are several determina-
tions: The first one, which we give as Set I in Table
1, was obtained from a fit to the extrapolated thresh-
old parameters a" , b" , a" , the Goldberger-Trei-0,q 0,q 1,"

w xman discrepancy and the nucleon sy term 10 .
Note that the full nucleon mass dependence was
retained. For our purposes it is thus more convenient

w xa more recent determination 11 from a low energy
fit to p N phase-shift data, although the authors used
a different notation for the chiral parameters. The
resulting LEC translated to the a and b notationi i
Ž w x.see 11,19 are given in the Set II of Table 1. On
the theoretical side, there are estimations of the ai

parameters assuming they are saturated by the ex-
w xchange of resonances 9 , in fairly good agreement

with experimental determinations.

3. Low energy convergence

In all our following considerations we further
expand the amplitudes and threshold parameters as

Ž .in Eqs. 2 . For the scattering lengths we thus have

m m2
l 2 lq1 Ž1 ,1. Ž1 ,2.a m s a q a2 I 2 J 2 2F F M

m3 m3
Ž1 ,3. Ž3 ,3.q a q a q PPP ,2 2 4F M F

6Ž .

Table 1
HBChPT low energy constants. Those in the first column were obtained from fitting the extrapolated threshold parameters a" , b" , a" ,0,q 0,q 1,"

w xthe Goldberger-Treiman discrepancy and the nucleon sy term to the HBChPT predictions 10 . In the second column we give the
w xparameters obtained from a low energy fit to p N phase-shift data 11 . In the third column we give the parameters obtained from an IAM fit

with the a constrained to the ranges predicted by resonance saturation. Finally, the fourth column is the result of a totally unconstrained fiti

w x w xMojzis 10 Fettes et al. 11 Resonance Saturation fit Unconstrained fit
Set I Set II Set III Set IV

a y2.60"0.03 y2.69"0.4 y2.065"0.007 y1.36"0.021

a 1.40"0.05 1.34"0.1 0.915"0.005 0.438"0.0152
Ž .a y1.00"0.06 y1.15"0.1 y0.85 input y0.70"0.043

a 3.30"0.05 3.1"0.5 2.700"0.001 1.29"0.045

˜ ˜b qb 2.40"0.3 2.60"0.2 3.95"0.04 3.06"0.31 2

b̃ y2.8"0.6 y3.96"0.9 y1.45"0.03 y0.41"0.273

b̃ 1.4"0.3 0.55"0.5 y1.17"0.17 y1.5"0.26

˜b yb 6.1"0.6 7.1 "0.5 5.86 "0.19 7.4 "0.516 15

b y2.4"0.4 y1.72"0.3 y0.44"0.21 y3.7"0.219
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Table 2
l Ž y2 ly1 .HBChPT, lowest partial S and P wave-scattering lengths, a in GeV units for p N scattering using set II in Table 1, decomposed2 I 2 J

2 Ž 2 . Ž 2 2 . Ž 4 .as a sum of terms of first order 1rF , second order, 1r F M , and third order, 1r F M and 1r F . The sum of all the terms yields the
w xtotal scattering length parameter. For brevity, we only quote the errors in the final sum. The experimental values come from Ref. 21 for

w x w xSP98, and Ref. 20 for KA85. For very recent and accurate values of only the S-wave scattering lengths see 27
2 2 2 2 4Ž . Ž .1rF 1r F M 1r F M 1rF Total SP98 KA85

0 q0.16a y0.65 y0.04 q0.07 q0.07 y0.55 y0.64"0.01 y0.723 1 y0.18
0a 1.3 y0.34 y0.08 0.07 0.94"0.23 1.27"0.02 1.261,1
1 q0.8a 35.3 47.95 y1.75 0.26 81.8 80.3"0.6 78.753 3 y0.9
1a y17.7 15.46 y3.1 y6.35 y11.66"0.9 y10.5"0.9 y11.001 3
1 q1.0a y17.7 12.96 y1.84 y9.77 y16.3 y15.9"1.0 y16.193 1 y0.9
1 q1.6a y70.7 85.6 y3.77 y46.13 y35.0 y27.0 "1.4 y28.671 1 y1.5

and a similar expression for bl m2 lq3. The slower2 I 2 J

convergence of the HBChPT series as compared
with ChPT was pointed out by the authors of the first

Ž wcalculations, see for instance the comments in 9–
x.11 . For our purposes, we have found instructive to

separate the contributions to the scattering lengths
and effective ranges of the lowest partial waves,
which are given in Table 2, using the set II of LEC
in Table 1. Note that, in this way, the threshold
parameters are predictions, unlike those from set I
which uses them as an input. A distinctive pattern
emerging from this Table is that the contribution of

Ž 2 2 .order 1r F M is always rather small. Only in
some cases, however, is the contribution of order
1rF 4 also small. This is so in the P channel in33

particular, which is the one less likely to be well
described by HBChPT alone due to the low mass of

Ž .the D 1232 resonance. Hence, it seems that close to
threshold the 1rF 2 expansion converges faster than
the 1rM expansion. Actually, the 1rF 2 and

Ž 2 .1r F M terms are comparable. It is clear that any
unitarization method will only be consistent with the
HBChPT approach, if it treats both the first and the
second order as equally important.

4. Unitarization method for the reordered series

Our unitarization method assumes that, as sug-
gested by the perturbative calculation, the chiral
expansion in terms of 1rF 2 converges much faster
than the finite nucleon mass 1rM corrections. In-
deed there are some recent theoretical attempts
w x22,23 to define a relativistic power counting not
requiring the heavy baryon idea, returning somehow

w xto the spirit of older relativistic studies 24 . As a
matter of fact, we show that the well-known IAM
approach applied to the reordered HBChPT series
generates the P phase-shift satisfactorily, just us-33

ing the LEC determined at low energies. In addition,
it is possible to improve the overall description of
the six p N scattering S and P waves, using those
very same parameters. Finally, if one fits the p N

Žphase shifts with this method either constraining the
parameters to the Resonance Saturation Hypothesis

.or leaving all the parameters unconstrained the re-
sulting parameters have a much more natural size,
and the x 2 per d.o.f is considerably better than those
obtained with the IAM applied to plain HBChPT
w x17 . The IAM is based on the fact that elastic
unitarity imposes the following relation on a generic

y1 Žpartial wave f and its inverse f we drop the l, I
.and J labels for simplicity :

< < 2 y1Im fsq f ´ Im f syq. 7Ž .
As a consequence, any amplitude satisfying exactly
elastic unitarity has the form

1
fs . 8Ž .y1Re f y i q

Thus, we only have to calculate Re f y1, whose
different approximations provide different unitariza-
tion methods. Here we consider its expansion in
terms of m2rF 2, i.e.

m
Ž1.f v ,m ,F , M s t vrm , mrMŽ . Ž .2F

m3
Ž3.q t vrm , mrM q . . . ,Ž .4F

9Ž .



( )A. Gomez Nicola et al.rPhysics Letters B 486 2000 77–85´ 81

where we have used that t Ž2 nq1. are dimensionless
functions, only depending on dimensionless vari-
ables. The functions t Ž1. and t Ž3. are only known in a
further mrM expansion,

t Ž2 nq1. vrm ,mrMŽ .
m

Ž2 nq1,2 nq1. Ž2 nq1,2 nq2.s t vrm q t vrmŽ . Ž .
M

2m
Ž2 nq1,2 nq3.q t vrm . . . , 10Ž . Ž .ž /M

Ž . Ž .yielding Eq. 1 and Eq. 2 after a suitable isospin
projection2.

Perturbative unitarity in this expansion requires,
q

2Ž1. Ž3. Ž1.< <Im t s0 , Im t s t , 11Ž .
m

which also imply an infinite conditions in the 1rM
expansion. For fy1 we get then

1 F 2 1 t Ž3.
s ym q . . . . 12Ž .Ž1. 2Ž1.f m t w xt

Obviously, expanding in mrF 2 may be justified
provided these corrections are small. As we have
shown, for the P channel, they are small precisely33

at threshold, and there the unitarization scheme will,
approximately, reproduce the perturbative result. At
the same time, unitarity is exactly implemented since,

Ž .thanks to Eqs. 11 the above formula is of the form
Ž .given in Eq. 8 . However, the 1rM terms are not

small corrections at threshold, and thus we do not
further ‘‘expand the denominator’’. In this way we
keep the first mass corrections as equally important.
At present, only the t Ž1,1., t Ž1,2., t Ž1,3. and t Ž3,3.

ŽHBChPT terms are known see our previous footnote
. Ž3,4. Ž3,5.1 . Therefore, we do not know neither t nor t .

Ž Ž 4 .. Ž Ž 4 2 ..i.e O 1r F M and O 1r F M respectively,
and we can only approximate the numerator of the
second term by t Ž3., t Ž3,3.. That is, we know the first
three orders of the denominator 1rm expansion, but
not their counterparts in the numerator. Therefore,
although we could use t Ž1., t Ž1,1.q t Ž1,2.q t Ž1,3. in
the denominator, for consistency with the numerator

2 The relation between f l and f " is given by f l s2 I,2 J l," 3,2 l " 1

f q y f y and f l s f q q2 f y .l," l," 1,2 l " 1 l," l,"

expansion we keep only t Ž1., t Ž1,1.. Incidentally, this
corresponds to the static limit of the second term.
Note also that strict unitarity is still satisfied. Of
course, it would be desirable to compute at least t Ž3,4.

and t Ž3,5. in order to be able to keep also t Ž1,2. in the
denominator of the second term of the mentioned
equation. After these remarks, we have

1 F 2 1
s 2m m<f mUnitarized Ž1 ,1. Ž1 ,2. Ž1 ,3.t q t q tž /M M

t Ž3,3.

ym . 13Ž .2Ž1 ,1.w xt

At threshold, our formula yields a modified scat-
tering length

1 F 2 1
s 2m ma mUnitarized Ž1 ,1. Ž1 ,2. Ž1 ,3.a q a q až /M M

a Ž3,3.

ym 14Ž .2Ž1 ,1.w xa

1 a Ž3,3.

s ym , 15Ž .23 Ž1 ,1.m w xaŽ3,3.a y aHBChPT 4ž /f

1 <which, using set II in Table 1, yields a sUnitarized3 3
q0.34 y3 1 <82.95 GeV , to be compared with a HBChPTy0.35 3 3

s81.8 q0.8 GeVy3, both compatible with the experi-y0.9

mental values. Notice that if we had expanded the
denominator considering the second order contribu-

Ž Ž 2 ..tion O 1r F M to be small we would have ob-
w xtained strictly the IAM method as used in Ref. 17 ,

Ž .2 1,2°1 F 1 m a~s y 2Ž .1,1¢ Ž .1,1a m MaIAM a

2Ž1 ,3. Ž1 ,2.2 2 ¶w xm a m a •y q2 3ž / ž / ßŽ1,1. Ž1 ,1.M Mw x w xa a

a Ž3,3.

ym , 16Ž .2Ž1 ,1.w xa

1 < y3yielding a s22.8 GeV . This explains whyIAM3 3

an unconstrained IAM fit with standard HBChPT
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leads to LEC which are so different from those
w x w xfound in 10 , as noted in Ref. 17 .

5. Numerical results

From our previous discussion it is clear that at
threshold our unitarized amplitude will reproduce
very accurately and within error bars the HBChPT

results and hence the experimental data. In addition,
we expect that the P phase shift can be extended33

up to the resonance region by propagating the errors
of the LEC. It is also tempting to extend the other
five S and P wave phase shifts. We show in Fig. 1
the phase shifts obtained from our unitarization

Ž .method, Eq. 13 , compared with the experimental
w xp N data 21 . The shaded area corresponds to the

phase shifts obtained by propagating the errors of the

' w xFig. 1. Phase shifts as a function of the total CM energy s . Experimental data are from Ref. 21 . The shaded areas correspond to the
propagated errors of the parameters in set II, which were obtained from low-energy data. The dotted line is the HBChPT result extrapolated
to high energies. The dashed line is a fit with our unitarization procedure constrained to Resonance Saturation, whereas the continuous line
corresponds to an unconstrained fit.
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Table 3
1 < 2 Ž 1 . < 2D resonance parameters. The two first rows are obtained from the condition d spr2 and 1rG sM dd rds . The secondssM ssM33 D D 33D D

Žtwo rows are the real part and minus twice the imaginary part of its associated pole position, calculated for the central values of each set the
.errors are expected to be of the same order than for the first two columns

w xset I set II set III set IV PDG 25
q2 3 q15 q14Ž .M MeV 1240 1222 1227 "4 1226 1230–1234D y17 y12 y12

q46 q24 q5.2 q21Ž .G MeV 157 117 104.1 107 115–125D y33 y18 y4.4 y16
Ž . Ž .Re pole position MeV 1205 1204 1204 1204 1209–1211

Ž . Ž .Gy2 Im pole position MeV 110 110 110 84 98–102

w x Ž .parameters given in Ref. 11 See Table 1, set II by
means of a Monte Carlo gaussian sampling of the
LEC for any given CM energy value. Only for
comparison, the dotted line corresponds to standard
HBChPT extrapolated to high energies.

As one can see from the figures, the prediction of
our unitarized approach produces a distinctive reso-
nance in the P channel, with very similar parame-33

ters to the physical D as we will see below. Concern-
ing the other channels, there is some improvement in
the S waves, and a worse behavior for the P , P13 31

and P , but note that these three partial waves have11

very tiny phase shifts, and any small error yields a
large relative deviation.

The mass and width of the D resonance can be
obtained either from the phase shifts, by means of

1 < 2 Ž 1 . < 2d spr2 and 1rG sM dd rds , orssM ssM33 D D 33D D

from its associated pole in the second Riemann sheet
Ž .s ,M y iG r2 . We give in Table 3 the re-( pole D D

sults for different parameter sets. Note that the width
of the ‘‘predicted’’ resonance from the parameters

Ž .determined from low-energy data set II is qualita-
tively very similar to the real D. Of course, once we

Ž .fit to the data set III and IV , we obtain a much
better description.

w xHowever, it was pointed out in Ref. 17 that the
direct fit using the IAM directly on the HBChPT
series leads to chiral parameters of very unnatural
size. That is not the case when we fit with the
reordered method proposed here as it can be seen in
set IV of Table 1. This set comes from an uncon-
strained fit to the six S and P wave p N phase
shifts, which is represented as a continuous line in
Fig. 1. For the fits, which start at 1130 MeV, we
have used the MINUIT minimization routine assign-

w xing a 3% uncertainty as in 11 plus a systematic

w x Žerror of one degree to the data in 21 similar
w x.treatments are followed in 16,17 .
w xMuch more interesting 17 are those fits where

Ž 2 .the O p parameters are constrained to the range
estimated by the Resonance Saturation Hypothesis
w x9 . The fitted parameters are given as set III in Table
1, and the result is represented as the dashed line in
Fig. 1. In this case the P and S are not so well11 11

described, which may be due to effects of the
) Ž . Ž .N 1440 and N 1535 , respectively, which are the

closest resonances to the energy regions displayed in
Fig. 1. Indeed, the former plays a marginal role in
the Resonance Saturation Hypothesis whereas the
latter is not even considered.

A particularly relevant feature of these fits is that
not only the resulting parameters have a more natural
size, but also the x 2 per d.o.f. is between three and
four times smaller than for the corresponding IAM
fit applied to the standard HBChPT ordering. From
this we can conclude that considering the 1rM ex-
pansion separately as in our formalism is a sensible
approach, apart from the details of its precise realiza-
tion.

As an illustration of the uncertainties due to the
different determinations of chiral parameters, we have
also shown in Fig. 2 the area corresponding to our
formula applied to set I. We reobtain the same
qualitative result, although numerically the mass and
width of the D are worse than those obtained with
set II. In addition, in order to estimate the conver-
gence rate of our calculation, we have also plotted in

Ž .Fig. 2 the prediction in the static limit M™` . The
shaded area in Fig. 2 corresponds to the propagated
errors of the parameter set II in this limit. As we see,
there is also a distinctive resonant behavior, so that
the bulk of the dynamics is contained in the static



( )A. Gomez Nicola et al.rPhysics Letters B 486 2000 77–85´84

Fig. 2. P phase shift. The upper shaded area corresponds to the33

result of propagating the errors of the set I parameters. This
illustrates the uncertainties due to the choice of parameter sets
from the literature. The intermediate shaded area cover the propa-
gated uncertainties of set II if we applied the IAM in the static
limit. Finally, with the same set we show, in the lowest shaded
area the result of the IAM when applied directly to the standard
HBChPT expansion.

limit. However, the finite mass corrections, particu-
Ž 2 .larly the 1r F M contribution, are important to

achieve a better description3.
We have also studied what happens if one in-

cludes the incomplete higher order contributions to
Ž .the second quotient in Eq. 12 , i.e. if one approxi-

mates t Ž1., t Ž1,1.q t Ž1,2.q t Ž1,3. in its denominator.
In such case we obtain a worse result, closer to that
of the static limit, but still there is a distinctive
resonant behavior, improving the IAM results with
the standard HBChPT expansion. This suggests that

Žthe unknown higher order contributions see footnote
.1 in the numerator could give rise to some cancella-

tion with those still incomplete of the denominator.
Finally, we also show in Fig. 2 the results obtained
within the conventional IAM approach, for the pa-

w xrameter set II. As it was already pointed out in 17
the result is extremely poor if one uses the parame-
ters determined from low energy data.

3 Ž 2 2 .The 1r F M correction turns out to be quite small. That
was expected, since it neither provides a sizeable contribution at

Ž Ž 2 . .threshold unlike the 1r F M correction nor it is responsible
Ž 4 .for the restoration of unitarity like the 1rF correction .

6. Conclusions and outlook

Heavy Baryon Chiral Perturbation Theory pro-
vides definite predictions for the p N scattering am-
plitudes in the threshold region. However it violates
exact unitarity if the perturbative expansion is trun-
cated to some finite order and also is unable to

Ž .describe the D resonance and its associated pole in
the P channel. The analysis up to third order33

shows that the leading finite nucleon mass correc-
tion, which is second order, is of comparable size to
the static approximation and in fact it dominates the
corrections at threshold. This suggests a unitarization
method using the expansion in inverse powers of the
weak pion decay constant but without making the
heavy baryon expansion. Such an idea is supported
by recent theoretical attempts to redefine a relativis-
tic chiral counting for baryons. We have proposed a
unitarization scheme based on the Inverse Amplitude
Method applied to this reordered HBChPT expan-
sion. It provides a prediction for the p N phase
shifts, which generates a D resonance from the low
energy constants and their errors, as determined from
HBChPT. The fits within this scheme provide chiral
parameters of a natural size and a better overall
description than those performed with the IAM ap-
plied to the HBChPT standard expansion. This result
suggests that including the 1rM expansion sepa-
rately is a sensible physical approach. In addition,
this method can be easily generalized to higher
orders and coupled channels. Further work along
these lines is in progress.
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