Publication:
Correlation between ion hopping conductivity and near constant loss in ionic conductors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-04-16
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
For ionic conductivity relaxation in ionically conducting materials we predict in the framework of the coupling model that the magnitude of the ubiquitous near constant loss correlates with the activation energy E_(a) for independent ion hopping. Using experimental data of a variety of ionic conductors, this correlation has been borne out. The model also explains the observed correlation between the magnitude of the near constant loss and the value of the dc conductivity at room temperature, as well as the temperature dependence for the near constant loss.
Description
© 2004 The American Physical Society. C.L. and A.R. thank J. Santamaría for fruitful discussions. Financial support from CICYT Grant No. MAT2001-3713- C04 is acknowledged. The work performed at NRL was supported by ONR.
Unesco subjects
Keywords
Citation
1) C.A. Angell, Annu. Rev. Phys. Chem., 43, 693 (1992). 2) V. Dusastre, Nature (London), 414, 331 (2001). 3) K.L. Ngai, J. Non-Cryst. Solids, 203, 232 (1996). 4) Proceedings of the fourth International Discussion Meeting on Relaxations in Complex Systems, Heraklion, Crete, Greece, Jun 2001, edited by K.L. Ngai, G. Floudas, A.K. Rizos, and E. Riande @J. Non-Cryst. Solids, 307-310 (2002). 5) J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Dekker, New York, 1976). 6) W.K. Lee, J.F. Liu, A.S. Nowick, Phys. Rev. Lett., 67, 1559 (1991). 7) H. Jain, S. Krishnaswami, Solid State Ionics, 105, 129 (1998) --- H. Jain, X. Lu, J. Non-Cryst. Solids, 196, 285 (1996). 8) C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaría, K.L. Ngai, Phys. Rev. Lett., 86, 1279 (2001). 9) K.L. Ngai, J. Chem. Phys., 110, 10 576 (1999), see references therein. 10) B. Roling, C. Martiny, S. Murugavel, Phys. Rev. Lett., 87, 085901 (2001). 11) C. León, A. Rivera, J. Santamaría, C.T. Moynihan, K.L. Ngai, Phys. Rev. Lett., 89, 079601 (2002). 12) J. Kincs, S.W. Martin, Phys. Rev. Lett., 76, 70 (1996). 13) A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983). 14) C.T. Moynihan, Solid State Ionics, 105, 75 (1998). 15) K.L. Ngai, Y. Wang, C.T. Moynihan, J. Non-Cryst. Solids, 307-310, 999 (2002). 16) K. Funke, D. Wilmer, Solid State Ionics, 136-137, 1329 (2000). 17) J.C. Dyre, T.B. Schroder, Rev. Mod. Phys., 72, 873 (2000). 18) K.L. Ngai, C. León, Phys. Rev. B, 66, 064308 (2002), see references therein. 19) K.L. Ngai, Comments Solid State Phys., 9, 121 (1979). 20) K.L. Ngai, Philos. Mag. B, 77, 187 (1998). 21) K.L. Ngai, R.W. Rendell, in Supercooled Liquids, Advances and Novel Applications, edited by J.T. Fourkas, et al., ACS Symposium Series Vol. 676 (Am. Chem. Soc., Washington, DC, 1997), p. 45. 22) J. Habasaki, K.L. Ngai, Y. Hiwatari, Phys. Rev. E, 66, 021205 (2002). 23) K.L. Ngai, S.W. Martin, Phys. Rev. B, 40, 10, 550 (1989). 24) A. Rivera, C. León, C.P.E. Varsamis, G.D. Chryssikos, K.L. Ngai, C.M. Roland, L.J. Buckley, Phys. Rev. Lett., 88, 125902 (2002). 25) G.D. Chryssikos, L. Liu, C.P. Varsamis, E.I. Kamitsos, J. Non-Cryst. Solids, 235-237, 761 (1998). 26) D.L. Sidebottom, P.F. Green, R.K. Brow, Phys. Rev. Lett., 74, 5068 (1995). 27) C.H. Hsieh, H. Jain, J. Non-Cryst. Solids, 203, 293 (1996). 28) A.S. Nowick, A.V. Vaysleb, W. Liu, Solid State Ionics, 105, 121 (1998). 29) R. Belin, A. Zerouale, A. Pradel, M. Ribes, Solid State Ionics, 143, 445 (2001).
Collections