Publication:
Extremal states for photon number and quadratures as gauges for nonclassicality

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-04-27
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Rotated quadratures carry the phase-dependent information of the electromagnetic field, so they are somehow conjugate to the photon number. We analyze this noncanonical pair, finding an exact uncertainty relation, as well as a couple of weaker inequalities obtained by relaxing some restrictions of the problem. We also find the intelligent states saturating that relation and complete their characterization by considering extra constraints on the second-order moments of the variables involved. Using these moments, we construct performance measures tailored to diagnose photon-added and Schrodinger-cat-like states, among others.
Description
©2015 American Physical Society. We thank G. Toth, H. de Guise, and B.-G. Englert for fruitful discussions. Z.H. and J.R. are thankful for the financial assistance of the Grant Agency of the Czech Republic (Grant No. 15-031945) and the IGA Project of the Palacky University (Grant No. PrF_2015_002). G.L. is partially funded by EU FP7 (Grant No. Q-ESSENCE). Finally, P.H. and L.L.S.-S. acknowledge the support from the Spanish MINECO (Grant No. FIS2011-26786) and UCM-Banco Santander Program (Grant No. GR3/14).
Keywords
Citation
[1] C. M. Caves, C. A. Fuchs, and R. Schack, Quantum probabilities as Bayesian probabilities, Phys. Rev. A 65, 022305 (2002). [2] R. W. Spekkens, Evidence for the epistemic view of quantum states: A toy theory, Phys. Rev. A 75, 032110 (2007). [3] M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the quantum state, Nat. Phys. 8, 475 (2012). [4] Quantum State Estimation, edited by M. G. A. Paris and J. Řeháček, LecturesNotes in PhysicsVol. 649 (Springer,Berlin, 2004). [5] U. M. Titulaer and R. J. Glauber, Correlation functions for coherent fields, Phys. Rev. 140, B676 (1965). [6] P. Carruthers and M. M. Nieto, Phase and angle variables in quantum mechanics, Rev. Mod. Phys. 40, 411 (1968). [7] R. Lynch, The quantum phase problem: A critical review, Phys. Rep. 256, 367 (1995). [8] S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 1997). [9] V. Peřinova, A. Lukš, and J. Peřina, Phase in Optics (World Scientific, Singapore, 1998). [10] A. Luis and L. L. Sánchez-Soto, Quantum phase difference, phase measurements and quantum Stokes parameters, Prog. Opt. 41, 421 (2000). [11] N. Imoto, H. A. Haus, and Y. Yamamoto, Quantum nondemolition measurement of the photon number via the optical Kerr effect, Phys. Rev. A 32, 2287 (1985). [12] M. D. Levenson, R. M. Shelby, M. Reid, and D. F.Walls, Quantum nondemolition detection of optical quadrature amplitudes, Phys. Rev. Lett. 57, 2473 (1986). [13] H. F. Hofmann, T. Kobayashi, and A. Furusawa, Nonclassical correlations of photon number and field components in the vacuum state, Phys. Rev. A 62, 013806 (2000). [14] Z. Hradil, Noise minimum states and the squeezing and antibunching of light, Phys. Rev. A 41, 400 (1990). [15] Z. Hradil, Extremal properties of near-photon-number eigenstate fields, Phys. Rev. A 44, 792 (1991). [16] I. Urizar-Lanz and G. Tóth, Number-operator–annihilationoperator uncertainty as an alternative for the number-phase uncertainty relation, Phys. Rev. A 81, 052108 (2010). [17] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 2006). [18] U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 2005). [19] A. Lukš, V. Peřinova, and J. Peřina, Principal squeezing of vacuum fluctuations, Opt. Commun. 67, 149 (1988). [20] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, Weinheim, 2004). [21] V. V. Dodonov, Universal integrals of motion and universal invariants of quantum systems, J. Phys. A 33, 7721 (2000). [22] R. Loudon, Graphical representation of squeezed-state variances, Opt. Commun. 70, 109 (1989). [23] R. Tanaś, A. Miranowicz, and S. Kielich, Squeezing and its graphical representations in the anharmonic oscillator model, Phys. Rev. A 43, 4014 (1991). [24] J. H. Shapiro and S. S. Wagner, Phase and amplitude uncertainties in heterodyne detection, IEEE J. Quantum Electron. 20, 803 (1984). [25] P. Adam,M.Mechler, V. Szalay, and M. Koniorczyk, Intelligent states for a number-operator–annihilation-operator uncertainty relation, Phys. Rev. A 89, 062108 (2014). [26] J. Řeháček, Z. Bouchal, R. Čelechovský, Z. Hradil, and L. L. Sánchez-Soto, Experimental test of uncertainty relations for quantum mechanics on a circle, Phys. Rev. A 77, 032110 (2008). [27] Z.Hradil, J. Řeháček,A. B.Klimov, I. Rigas, and L. L. Sánchez-Soto, Angular performance measure for tighter uncertainty relations, Phys. Rev. A 81, 014103 (2010). [28] D. T. Pegg and S. M. Barnett, Phase properties of the quantized single-mode electromagnetic field, Phys. Rev. A 39, 1665 (1989). [29] I. Bialynicki-Birula, M. Freyberger, and W. Schleich, Various measures of quantum phase uncertainty: A comparative study, Phys. Scr. T48, 113 (1993). [30] A. Rojas González, J. A. Vaccaro, and S. M. Barnett, Entropic uncertainty relations for canonically conjugate operators, Phys. Lett. A 205, 247 (1995). [31] A. E. Rastegin, Entropic formulation of the uncertainty principle for the number and annihilation operators, Phys. Scr. 84, 057001 (2011). [32] A. E. Rastegin, Number-phase uncertainty relations in terms of generalized entropies, Quantum Inf. Comput. 12, 0743 (2012). [33] C. Aragone, G. Guerri, S. Salamo, and J. L. Tani, Intelligent spin states, J. Phys. A 7, L149 (1974). [34] D. T. Pegg, S. M. Barnett, R. Zambrini, S. Franke-Arnold, and M. Padgett, Minimum uncertainty states of angular momentum and angular position, New J. Phys. 7, 62 (2005). [35] R. Jackiw, Minimum uncertainty product, number–phase uncertainty product, and coherent states, J. Math. Phys. 9, 339 (1968). [36] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 1. [37] H.Yuen, Generation, detection, and application of high-intensity photon-number-eigenstate fields, Phys. Rev. Lett. 56, 2176 (1986). [38] C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005). [39] M. Kitagawa and Y. Yamamoto, Number-phase minimumuncertainty state with reduced number uncertainty in a Kerr nonlinear interferometerr, Phys. Rev. A 34, 3974 (1986). [40] I. Rigas, A. B. Klimov, L. L. Sánchez-Soto, and G. Leuchs, Nonlinear cross-Kerr quasiclassical dynamics, New J. Phys. 15, 043038 (2013). [41] A. Wünsche, Displaced Fock states and their connection to quasiprobabilities, Quantum Opt. 3, 359 (1991). [42] G. S. Agarwal and K. Tara, Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A 43, 492 (1991). [43] A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light, Science 306, 660 (2004). [44] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, Generation of optical ‘Schrödinger cats’ from photon number states, Nature (London) 448, 784 (2007). [45] E.V. Shchukin and W. Vogel, Nonclassicality moments and their measurements, Phys. Rev. A 72, 043808 (2005).
Collections